MAGNETIC HYSTERESIS DYNAMIC MODEL: VARIABLE FREQUENCY PARAMETERS ADJUST.

PEDRO SÉRGIO PEREIRALIMA

1. Engenharia de instrumentação, Automação e Robótica da UFABC
Av dos Estados, 5001 – Santo André (SP)
peralima@ufabc.edu.br

Abstract— It is proposed a dynamical model to describe the magnetic hysteresis with two state variables: the intensity magnetic field \(H \) and the polarization field \(M \); and two non-linear function, the first responsible for the characterization of the an-hysteretic curve \(f(H^*) \), and the other responsible for the characterization of the Barkhausen noise, \(g(M) \). It is made a discussion about the adhesion properties of this model to observed behavior of the hysteretic magnetic curve, it is also presented a comparison between the predictions and the experimental data in four different frequencies 5mHz, 50 mHz, 20 Hz and 60 Hz.

Keywords— magnetic hysteresis, dynamic model.

1 Introduction

This work proposes a dynamical approach to describe the magnetic hysteresis. It is a second order model, being the apparent magnetic field \(H \) and the magnetization field \(M \) its state variables. Two non-linear functions \(f(.) \), the an-hysterical magnetization curve, and \(g(.) \),the Barkhausen noise, complete the model.

A parameter fitness is obtained for different excitation frequencies: 5, 50mHz for 1,5T and 20, 60 Hz for 1,7T and 1,5 T respectively. The data used refer to one single iron-siliceous material used in Epstein Square calibration.

2 Model Assumptions

2.1 Physical Model

The electromagnetic apparatus is very simple a cooper coil turned around a magnetic nucleus torus feed by an alternating voltage generator, seeing in figure 1a. Its electrical circuit is shown in figure 1b.

Let’s present the dynamical equations set proposed to describe the MxH relation.

- Magnetic density leakage field
 \[
 \frac{B(t)}{\mu_0} = H(t) + M(t) \quad [A/m]
 \]
 \(B(t) \) is the total magnetic field within the material, and \(\mu_0 = 4\pi \times 10^{-7} [T l/(A.m)] \).
- Effective intensity magnetic field
 \[
 H(t) = H_E(t) - \tau_H \dot{H}(t) \quad [A/m]
 \]
 \(H_E \) is the applied intensity magnetic field, created by the current passing the coil. The derivative term is due to the Foucault (eddy) macro-current. These currents there exist also in non-magnetic materials, since they are electrical conducting materials.
- Magnetic polarization field
 \[
 M(t) = f\left(H^*\right) - \tau_M \dot{M}(t) \quad [A/m]
 \]
 \(f\left(H^*\right) \) is an empirical function that fits the an-hysterical curve, here we suggest:
 \[
 f\left(H^*\right) = \frac{\chi}{\mu_0} \left[\beta \arctan\left(\frac{H^*}{H_1} \right) + (1-\beta) \arctan\left(\frac{H^*}{H_2} \right) \right]
 \]
 and also: \(\chi \equiv \frac{\mu_0 M_{sat}}{\pi/2} \) and \(0 \leq \beta \leq 1 \)

The \(H_1 \) and \(H_2 \) parameters describe the magnetization at two different moments: the first one is the domain wall movement and the second one the atoms rotation.

It is convenient to define an auxiliary variable the polarization phase \(\theta \) as:
 \[
 \theta(t) = \frac{\mu_0 M(t)}{\chi}
 \]
 Rewriting the equations according to the state space description we obtain the variables \(H(t) \) and \(\theta(t) \) as a function of the applied field \(H_E(t) \).

\[
\tau_H \dot{H} = H_E - H
\]
\[\tau_{m} \dot{\theta} = \beta \cdot \text{atan} \left(\frac{H_{1}^{+}}{H_{2}^{+}} \right) + (1 - \beta) \cdot \text{atan} \left(\frac{H_{1}^{-}}{H_{2}^{-}} \right) - \theta \quad (6) \]

- Liquid intensity magnetic field
\[H^{+}(t) = H(t) + \alpha, g(\theta) \quad (7) \]

It is responsible for the induction of the material polarization. The proposal for this field was firstly made by Jiles [2] and differs to the present due to the \(g(\theta) \) term that represents the Barkhausen noise [3]. An appropriate choice for this function allows us to obtain immumerous distinct equilibrium points. This feature is not present at the linear form of \(g(\theta) \).

2.2 Barkhausen Noise

The role of \(g(\theta) \) function is to induce the Barkhausen noise, and is given by:
\[g(\theta) = \sin(\sigma, \theta) \quad (8) \]

One can see that for small values of \(\sigma \) this function approaches to a linear, becoming likely the Jiles model. For practice we can define \(\sigma \) as:
\[\sigma \approx (4k + 1) \cdot \frac{\theta_{\text{ren}}}{\theta_{\text{equ}}} \quad \text{and } k \text{ as being an integer number proportional to the domains quantity.} \]

The possible equilibrium points, for null intensity magnetic field, must obey to:
\[\theta_{\text{equi}} = \beta \cdot \text{atan} \left(\frac{\alpha \sin(\sigma, \theta_{\text{equi}})}{H_{1}} \right) + (1 - \beta) \cdot \text{atan} \left(\frac{\alpha \sin(\sigma, \theta_{\text{equi}})}{H_{2}} \right) \quad (9) \]

The last equilibrium point will be called the material’s remnant field; this value allows us to obtain the value for \(\beta \) as:
\[\beta = \frac{\theta_{\text{ren}} - \text{atan} \left(\frac{\alpha}{H_{1}} \right)}{\text{atan} \left(\frac{\alpha}{H_{1}} \right) - \text{atan} \left(\frac{\alpha}{H_{2}} \right)} \quad (10) \]

A stability study at these points shows an alternation between stable an unstable points. This property implies that there exists a minimum necessary level of magnetization field to jump from one stable point to another neighborhood.

2.3 Dynamic model parameters

The parameters set to be adjusted may be divided in pairs according to the physical phenomenon associated with it, so the pair \((\chi, \beta)\) is related to the saturation and remnant magnetic density fields; the pair \((H_{1}, H_{2})\) to the an-hysterical function; the pair \((\alpha, \sigma)\) to the Barkhausen noise; and the pair \((\tau_{H}, \tau_{m})\) to the Foucault (eddy) currents. The time constant \(\tau_{H}\) due to the macro-currents, depends on the material electrical resistivity and the shelf width of the ferromagnetic core; the time constant \(\tau_{m}\), due to the micro-currents, depends also on the material electrical resistivity and the grain size.

Finally the \(a, \sigma\) parameters are related to the average magnetic gain created by the domain wall movement that produces the Barkhausen noise. Experiments focused to its detection will present data enough to the necessary parameter fitness [4]. The other parameters have also been discussed.

3 Parameters adjustment based on hysteresis curves

Four figure sets are shown, figures 1 to 4, for four different frequencies: 5 and 50 mHz, at 1.5T saturation field; and 20 and 60 Hz, at 1.7T and 1.5T respectively. Each set contains four graphics; the superior graphics present the experimental and theoretical curves for Bxt and BxH. The inferior graphics present the magnetic energy stocked by the macro and micro currents. These energy were calculated as:
\[\int H_{k} \cdot \frac{\dot{B}}{\mu_{0}} \cdot dt \]
both added give the total energy. One can observe that the micro-current energy is increasing each cycle, although the macro-current energy is almost constant. The ratio between their amplitudes is about one thousand.

The last graphic is Hxt and HxH, there is no apparent difference between both for low frequencies (mHz) while a small delay can be shown for high frequencies (60 Hz).

The parameters fitness was obtained searching the minimum squared error between the theoretical and experimental data for the superior figures to all studied frequencies.

Table 1 – Parameters fitness: equations (9) and (10).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{sat} → χ</td>
<td>2.1600</td>
</tr>
<tr>
<td>B_{ren} → β</td>
<td>1.0434</td>
</tr>
<tr>
<td>H_{1}</td>
<td>4.0276e+01</td>
</tr>
<tr>
<td>H_{2}</td>
<td>1.1452e+04</td>
</tr>
<tr>
<td>τ_{H}</td>
<td>2.1088e-05</td>
</tr>
<tr>
<td>τ_{m}</td>
<td>1.0544e-05</td>
</tr>
<tr>
<td>α</td>
<td>7.4952e+01</td>
</tr>
<tr>
<td>k → σ</td>
<td># 20</td>
</tr>
</tbody>
</table>

To finalize the analysis two graphics are presented in figure 5, they represent the Barkhouse noise as dM/dt x t and also dM/dt x H. An histogram was computed, based on this figure, to compare with the Barkhausen noise in [4]. For each dH(A/m) interval the edges were counted. The following table was extracted and compared with [4], the similarity gave us the clue to relate the g(.) function with the Barkhausen noise.
Table 2 – Histogram: events number of Barkhausen noise versus Induction magnetic field H.

<table>
<thead>
<tr>
<th>From</th>
<th>Until</th>
<th># of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>-250</td>
<td>-200</td>
<td>1</td>
</tr>
<tr>
<td>-200</td>
<td>-150</td>
<td>0</td>
</tr>
<tr>
<td>-150</td>
<td>-100</td>
<td>1</td>
</tr>
<tr>
<td>-100</td>
<td>-50</td>
<td>2</td>
</tr>
<tr>
<td>-50</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>250</td>
<td>2</td>
</tr>
</tbody>
</table>

4 Conclusion

The present model was able to represent well the magnetic hysteresis curve from low (mHz) to high (Hz) frequencies. The remnant and saturation field fit well and the number of parameters (6) is not too much when seeing the phenomenon complexity.

A particular feature of this model if compared to others [5], is the Foucault current presence that are entirely responsible for the material losses. Even at low frequencies due to the sinusoidal feed-back term, the system becomes locally unstable and the losses can be explained by this term.

Acknowledgment

Our sincerely thanks to the researchers of Laboratório de Materiais Magnéticos e Metalurgia do Pó do Instituto de Pesquisas Tecnológicas do Estado de São Paulo, that graceful gave us the necessary data to this work, and a special mention to the drs Julio Carlos Teixeira e Fernado Landgraf.

References

Fig. 1 – Hysteresis curve at 5 mHz and 1.5 T.

Fig. 2 – Hysteresis curve at 50 mHz and 1.5 T.
Fig. 3 - Hysteresis curve at 60 Hz and 1.5 T.

Fig. 4 – Hysteresis curve at 20 Hz and 1.7 T.
Fig. 5 – Barkhausen noise (20 Hz at 1.7 T)