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Abstract. We investigate the problem of estimating the perfusion coefficient in a 2D bioheat
model with convective boundary conditions. As a result, a method is proposed based on a
pseudoespectral method for the direct problem and the regularized Gauss-Newton for the
inverse problem. Numerical results are presented.
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1 Introduction

Modeling of heat transfer processes in biological tissues is of great importance in thera-
peutic procedures. Accurate temperature quantification in these processes is a very difficult
task due to several factors peculiar to living tissues, e.g., complex anatomical structure,
blood perfusion, etc [5]. In the context of 2D continuum models, the temperature U and
the space-dependent blood perfusion coefficient Pf > 0 are related through the Pennes
bioheat transfer equation, [9], which in non-dimensional form, is given by

Ut −∆U + PfU = G, (x, y) ∈ O, t ∈]0, T ], (1)

Ux = 0 on Γ2×]0, T ], (2)

Ux = 0 on Γ4×]0, ]), (3)

Uy = B(U − U∞) on Γ3×]0, T ], (4)

U = 0 on Γ1×]0, T ], (5)

U = T0 in O × {0}, (6)

where G(x, y, t) is a source term which stands for metabolic heat generation, B is the
Biot number, U∞ is an appropriate constant, and T0 denotes the initial temperature.
In addition, O =]0, 1[×]0,M [, Γ1 =]0, 1[×{M}, Γ3 =]0, 1[×{0}, Γ2 = {0}×]0,M [, and
Γ4 = {1}×]0,M [. In general, the tissue is not homogeneous and the perfusion coefficient
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Pf is time and spacewise-dependent. Several analytical and numerical methods have been
employed to investigate the solution of the bioheat equation in different scenarios. For
example, [4] deals with transient coefficients by spectral element methods; oscillatory heat
flux condition with has been considered in [13]; in [2] the finite difference method was
used in the case of concentric spherical regions, see also [12]. A 2D bioheat equation with
convective boundary conditions is developed in [1].

In the inverse perfusion coefficient estimation problem, we are given a set of temper-
ature measurements and the perfusion coefficient is regarded as unknown and needs to
be estimated. Regarding this, interesting approaches for the one dimensional case can be
found in [15]; an approach for the the 2D case was developed by [7]. In addition, several
experimental techniques for estimating Pf can be found in [3].

In this work we address the space-dependent perfusion estimation problem associated
to the bioheat model (1)-(6), for the case where Pf does not depend on time. The solution
of this non linear inverse problem requires iterative methods where the bioheat problem
(the direct problem) has to be solved at each iteration with the coefficient Pf being consid-
ered known. In order to solve the direct problem, a pseudospectral approach is introduced
and numerically illustrated in section 2. The perfusion estimation problem is outlined in
Section 3. The paper ends with some considerations in section 4.

2 Direct Problem

In this section we briefly describe an approach for the bioheat problem based on the
pseudospectral collocation (CPS) method. The CPS approach has become an efficient
way to construct approximate solutions to time dependent partial differential equations
(PDEs) [6, 14], due to its high precision and relatively lower computation cost compared
with difference finite methods. In this case, spatial derivatives are approximated by using
the differentiation Chebyshev matrix, giving rise to a system of ordinary differential equa-
tions (ODEs) where only the time derivative appears, which is then integrated in time by
using methods for ODEs. For simplicity we consider a mesh consisting of (n+1)× (n+1)
grid points (numbered in the lexicographic ordering) based on (n + 1) Chebyshev-Gauss
Lobatto points in each direction:

xi =
1

2

(
1− cos

πi

n

)
0 ≤ i ≤ n, yj =

1

2

(
1− cos

πj

n

)
, 0 ≤ j ≤ n, (7)

In order to approximate spatial derivatives, let us denote the (n + 1) × (n + 1) differ-
entiation Chebyshev matrix in [0, 1] by D and assume that D = [d0 d1 · · · dn] =

[r0 r1 · · · rn]
T , di, ri ∈ R

n+1, D1 = [d1 d2 · · · dn−1], and D2 = [r1 r2 · · · rn−1]
T . Let

U j(t) = [U(x0, yj , t), U(x1, yj , t), · · ·U(xn, yj , t)]
T , 0 ≤ j ≤ n. Then the vector second
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order derivatives of U with respect to x can be approximated as




Uxx(x0, y0, t)
...

Uxx(xn, y0, t)
...

Uxx(x0, yn−1, t)
...

Uxx(xn, yn−1, t)




≈ (In ⊗D1D2)U(t) (8)

where U(t) = [U0(t)
T U1(t)

T · · ·Un−1(t)
T ]T , and where ⊗ stands for Kronecker product.

Similarly, the vector containing second order derivatives with respect to y in all points of
the grid can be approximated by




Uyy(x0, y0, t)
...

Uyy(xn, y0, t)
...

Uyy(x0, yn−1, t)
...

Uyy(xn, yn−1, t)




≈
[(
Bd0e

T
1 +D1D2

)
⊗ I(n+1)

]
U(t)−B U∞H, (9)

where H = [HT
0 , . . . , H

T
n−1]

T , with Hi = eTi+1d0 [1, . . . , 1]
T ∈ R

n+1, i = 0, . . . , n − 1. In
the above equation D1 and D2 are defined similarly as D1 and D2, respectively, where
di (resp. ri) is obtained by taking the first n components of di (resp. ri). Neglecting
discretization errors and denoting the vector of approximations to U(t) by V (t), (8), (9)
and (1) yield an initial-value problem of the form

{
V ′(t) = AV (t) + S(t),
V (0) = U0,

(10)

where

A =
[
(In ⊗D1D2) + (Bd0e

T
1 +D1D2)⊗ I(n+1) − P f

]
, (11)

P f = diag (Pf (x0, y0), . . . , Pf (xn, y0), . . . , Pf (x0, yn−1), . . . , Pf (xn, yn−1)) , (12)

and

S(t) = F (t)−BU∞H, with (13)

F (t) = [F (x0, y0, t), . . . , F (xn, y0, t), . . . , F (x0, yn−1, t), . . . , F (xn, yn−1, t)]
T . (14)

Thus, application of the CPS-based numerical approach to the bio-heat model reduces to
apply time integration methods for ODES for solving the initial value problem (10). In
our computations we integrate in time by the fourth order Runge-Kutta method which
we denote by CPS-RK4. To illustrate the effectiveness of the CPS-RK4 approach we
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consider the perfusion coefficient constant case where the source term is taken to be

G(x, y, t) = eaty2(y −M) cos(πx)[a cos (ct)− c sin (ct)]

− eat cos (ct) cos (πx)[−π2y2(y −M) + (6y − 2M)]−
2BU∞

M

+ Pf [e
at cos (ct)y2(y −M) cos(πx) +

BU∞

M
y(y −M)]

where a, c are arbitrary real constants. In this case the solution for this bioheat problem
can be shown to be U(x, y, t) = eat cos (ct)y2(y −M) cos(πx) + BU∞

M
y(y −M). We report

results corresponding to the data a = −50, c = 3π, B = 0.015, Pf = 0.1, M = 1, and
U∞ = 0.001. Discretization is made taking n = 20, which implies a grid of 21× 21 points
and a system matrix A of size 420 × 420. We compute the maximum allowable timestep
for stable integration and use ∆t = 0.00004. The results are displayed in Figure 1.

0

0.5

1

0

0.5

1
−6

−4

−2

0

2

x 10
−6

Approximate solution at t= 0.2

0

0.5

1

0

0.5

1
−5

0

5

10

x 10
−17

Error at t=0.2

Figure 1: Approximate solution computed by CPS-RK4 and corresponding error with
respect to the exact solution in a grid of 21× 21 points.

3 Perfusion coefficient estimation: pseudospectral approach

In practice the goal is to estimate the perfusion coefficient by using a set of measured
temperature as input data. The estimation approach proposed in this paper assumes
that the initial-boundary value problem (1)-(6) is transformed into a system of ordinary
differential equations (ODEs) in which only the time derivative appears. This means that
discretization is made only in space and that, due to the nature of the original problem,
the discretization procedure gives rise to a system of ODEs of the form

{
U
′(t) = A(p)U(t) + S(t),

U(0) = U0,
(15)

where p is a vector of unknown parameters, A(p) is a square matrix that depends non
linearly on p and the chosen discretization method, and the source term S(t) is a vector
valued function that also depends on the chosen spatial discretization method. The solu-
tion of (10) is a vector valued function that depends on p and contains approximations to
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the solution U(t, xi, yj) on the spatial grid; this solution is denoted by U(p, t). Thus, the
inverse problem of estimating the perfusion coefficient can be formulated as one of esti-
mating a vector p of parameters such that the difference between computed temperatures
U(p, t) at prescribed locations and experimentally acquired temperatures at the same lo-
cations is minimized in some sense. For future reference, computed and experimentally
measured temperatures at locations ℓi, i = 1, 2, . . . ,M , and time levels tk, k = 1, . . . , q,
are denoted by U tk

ℓi
(p) and Ũ tk

ℓi
, respectively.

Thus the perfusion estimation problem can be, in principle, handled by solving a non
linear least squares problem of the form

p∗ = argmin
p∈RN

F (p), F (p) =

q∑

k=1

M∑

i=1

(U tk
ℓi
(p)− Ũ tk

ℓi
)2, (16)

where p = [p1, . . . , pN ]T is the vector of unknowns. Differentiation of F with respect to pj
gives

∂F (p)

∂pj
= 2

q∑

k=1

M∑

ℓ=1

(Ũ tk
ℓi
(p)− Ũ tk

ℓi
)
∂U tk

ℓi
(p)

∂pj
.

Hence the necessary condition of minimum,
∂F (p)

∂pj
= 0, j = 1, 2, . . . , N, can be rewritten

in matrix form as
2J(p)T (U(p)− Ũ) = 0, (17)

where J(p) is an (M × q)×N referred to as the sensitivity matrix and given as

J(p) =




J1(p)
...

Jq(p)


 , with [Jk(p)]i,j =

∂U tk
ℓi
(p)

∂pj
, 1 ≤ i ≤ M, 1 ≤ j ≤ N. (18)

The non linear problem (16) must be solved iteratively with the matrix J(p) changing
at each iteration. Therefore, the matrix J(p) must be computed efficiently and this can
be done as follows. Taking partial derivative with respect to pj on both sides of (10) gives

∂

∂pj
U ′(t) = A(p)

∂U(p, t)

∂pj
+

∂A(p)

∂pj
U(p, t)

Letting V (p)(t) = ∂U(p, t)/∂pj and interchanging the order of differentiation, the above
equation becomes an system of ODEs with V (t) as unknown. On the other hand, if (10)
is solved for U(t) then it follows that ∂U(p, t)/∂pj |t=0 = 0. Hence, the determination of
the jth column of the sensitivity matrix requires solving the initial value problem

{
V ′(t) = A(p)V (t) +W (t)
V (0) = 0,

, (19)

where W (t) = ∂A(p)/∂pjU(p, t). Once this initial value problem is solved, the jth column
of the sensitivity matrix is determined by taking the components of V (t) that correspond
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to the locations li, i = 1, . . . ,M . Notice that this requires solving the direct problem (10)
for U(p, t). As already mentioned, in this paper we assume that the direct problem (1)-(6)
is solved by using the pseudospectral collocation method, as described in the previous
section, and thus, for each p, this gives rise to a system matrix given by

A(p) =
[
(In ⊗D1D2) + (Bd0e

T
1 +D1D2)⊗ I(n+1) − P f

]
, (20)

where P f is a diagonal matrix given as

P f = diag (Pf (x0, y0), . . . , Pf (xn, y0), . . . , Pf (x0, yn−1), . . . , Pf (xn, yn−1)) , (21)

thereby indicating that the vector of parameters is

p = [Pf (x0, y0), . . . , Pf (xn, y0), . . . , Pf (x0, yn−1), . . . , Pf (xn, yn−1)]
T . (22)

Having computed efficiently the sensitivity matrix, the nonlinear problem (16) can
be handled in several ways. For example by using non linear conjugate gradients (NCG),
Gauss-Newton methods, Tikhonov regularization, or others. For an account of a variety of
methods for heat inverse problems, the reader is referred to [8]. In this work, the perfusion
estimation problem is addressed through a regularized Gauss-Newton method.

4 Conclusions

A two dimensional Pennes equation subjected to mixed boundary conditions in a rect-
angle has been considered focusing, first, on a numerical method for the direct problem.
The numerical method transforms the bioheat problem into a first order system of ordinary
differential equations where only the time derivative appears, and then integrates in time
by using the fourth order Runge-Kutta method. The method was illustrated numerically
and shown to be very efficient in terms of simplicity and accuracy. In addition, the perfu-
sion estimation problem was addressed by using a regularized version of the Gauss-Newton
method. The development of further methods for this inverse problem is the subject of
ongoing research.
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