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Abstract. There are several solutions to enhance energy harvesting efficiency and is 

highlighted as the most promised state of the art research the active control driven for increase 

mechanical energy transformation from vibration to electric energy. The control driven uses the 

impulse to curt circuit the piezoelectric film and takes advantage of piezoelectric indirect effect. 

The controller changes the relative stiffness, damping and mass of the studied system and 

consequently changes the system natural frequency. It is imposed velocity and acceleration to 

the system to combine the exogenous excitation to system parameters and resulting in 

maximum mechanical energy transfer. A numeric simulation was lead using a Linear Matrix 

Inequalities controller applied to a multimodal energy harvester. As main result the controller 

increased the energy harvester efficiency up to 4 times. 
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1 Introduction 
 

Energy harvesting systems are the solutions to convert small source of energy to 

electric energy [9]. It can be done by wind, solar radiation, radio frequency, small 

gradient of temperature and vibration [7]. The piezoelectric energy harvesting 

system are emerging as the better solution as the robustness, transduction capacity 

and reduced size for small size electronic devices [3]. Although the energy 

harvesting system are a promise to sustainable energy source their harness are the 

efficiency because their losses in mechanical energy transduction [1]. The focus of 

this research is the vibration as exogenous excitation and using a piezoelectric film 

attached to a cantilever beam connected to an electric load configuring the energy 

harvesting system. 

 

a)  

 

b)  

 
 

Figure 1: Energy harvesting system configuration [7]. 

 

Among several proposal of energy harvesting solutions to enhance their efficiency a 

multimodal projected was proposed by [8] as shown in Figure 1a. The advantage of using 

different beams in a multimodal solution is to take advantage of diverse natural frequencies 

to keep the system in resonance effect in a larger excitation frequency. The Figure 1b shows 

the output voltage for comparison of single cantilever beam and the multimodal using 

multiple cantilever beams. Another multimodal solution was studied by [10] and the 

author concluded that the multimodal solution allow the system to present a resonance 

behavior along a range varying from 15 to 40 Hz although a single cantilever beam 

present resonance only in a narrow range of band around few Hz. A single cantilever 

beam subjected to a periodic excitation can be described by the dimensionless equation 

[4]: 

 

 
�̈� + 2𝜁�̇� +

1

2
𝑥 − 𝜒𝜈 = 𝑓 𝑐𝑜𝑠 𝛺𝑡 

 �̇� + Λ𝜈 + 𝑘�̇� = 0 
(1)  

 

The equation is dimensionless defined according resonance were ζ is damping factor, 

χ is piezoelectric mechanical coupling coefficient, Λ is reciprocal of time constant and κ 

is piezoelectric electric coupling coefficient. According [8] the multimodal solution uses 

different cantilevers with different natural frequencies. It implies to singular stiffness for 

specific tip mass and cantilever length. The damping is not changed since the material 

used for each beam been the same. Also χ and κ are not changed from single to multiple 

cantilever since it depends on piezoelectric material and Λ depends of output load 
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capactivity and also is not changed from solutions. Among this many proposals of 

multimodal energy harvesting, a two degree of freedom (2DOF) of a spring-mass model 

can be generalized as shown in Figure 2.  

 

 
 

Figure 2: Spring-mass model of a 2DOF energy harvesting. 

 

A proposal to dimensionless by mass mathematic description of a multiple cantilever 

beam subjected to a periodic excitation, considering 2DOF is given by: 

 

 �̈�1 + 2𝜁�̇�1 + 𝑘1𝑥1 − 𝑘2(𝑥1 − 𝑥2) − 𝜒𝜈 = 𝑓 𝑐𝑜𝑠 𝛺𝑡 

�̈�2 + 2𝜁�̇�2 − 𝑘2(𝑥1 − 𝑥2) = 0 

 �̇� + Λ𝜈 + 𝑘�̇� = 0 
(2)  

 

Isolating �̈� and �̇� and adopting 𝑦1 = 𝑥1, 𝑦2 = �̇�1, 𝑦3 = 𝑥2, 𝑦4 = �̇�2 e 𝑦5 = 𝜈 the 

equations in space state are given in Equation 3. Applying Runge-Kutta forth order in 

equation (4) for dimensionless parameters 𝑘1 = 0.05, 𝑘2 = 0.03 (empirically adjusted) and 

𝜁 = 0.01, 𝛺 = 0.8, 𝜒 = 0.05, 𝜅 = 0.5, 𝛬 = 0.05 and 𝑓 = 0.083 [4] and initial conditions 

𝑥1(0) = 1, 𝑥2(0) = 0, �̇�1(0) = 0, �̇�2(0) = 0 and 𝜈(0) = 0  it is determined the rate of 

voltage and time history considering samples from 0 to 2500 in interval of 0.1 totalizing 

25,000 time sample according Figure 3a: output voltage. The Figures 3b: phase portrait 

from mass m1 and 3c: phase portrait from mass m2 considered samples from 2,000 to 

2,500 in interval of 0.1 to exclude transient behavior. 

 
�̇�1 = 𝑦2 

�̇�2 = −𝑘1𝑦1 + 𝑘2(𝑦1 − 𝑦3) − 2𝜁𝑦2 + 𝜒𝑦5 + 𝑓 𝑐𝑜𝑠 𝛺𝑡 

�̇�3 = 𝑦4 

�̇�4 = 𝑘2(𝑦1 − 𝑦3) − 2𝜁𝑦4 

�̇�5 = −𝜅(𝑦2 − 𝑦4) − 𝛬𝑦5 (3)  

 

For the chosen parameters the higher mechanical energy absorption is concentrated 

in mass m1 which is connected to the piezoelectric material for output voltage load. For 

a value of dimensionless stiffness 𝑘2 > 𝑘1 the mechanical energy concentration is going 

to on mass m2. According system configuration the options for different material with 

different stiffness can be set for a determined mechanical energy purpose. 
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a)  

 
b)  

 

c)  

 
 

Figure 3: Dynamical behavior of the energy harvesting system. 

 

 

2 Controller Definition 
 

To enhance the mechanical energy transfer from exogenous excitation and the 

multimodal energy harvesting system there were project a Linear Matrix Inequalities 

controller (LMI). A controller project to enhance energy harvesting efficiency was 

proposed by [5,9]. Considering the uncertain system given by:   

 

 

{
ẋ = Ax + B1w+ B2u              
y = Cx                                          

 
(4)  

A sufficient condition for the guarantee cost H∞ is the existence of a matrix 𝑋 =
𝑋′ ∈ ℛ𝑛𝑥𝑛, 𝑌 ∈ ℛ𝑚𝑥𝑛 [2,6], since: 

 

 

{
  
 

  
 

𝑚𝑖𝑛 𝜇

 

[
 
 
 
 
𝐴𝑋 + 𝑋𝐴′ − 𝐵2𝑌 − 𝑌

′𝐵2′ 𝑋𝐶′ + 𝑌′𝐷′ 𝐵1

𝐶𝑋 + 𝐷𝑌 −𝐼 0

𝐵1′ 0 −𝜇𝐼]
 
 
 
 

< 0

𝑋 > 0 

 

(5)  

with j = 1, ...., r 

 

When LMI are feasible a feedback state matrix that stabilize the system is given by 

𝐿 = 𝑌𝑋−1. To project the LMI controller the equation 2 is described in matrix form: 
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{
 
 

 
 
�̇�1
�̇�2
�̇�3
�̇�4
�̇�5}
 
 

 
 

=

[
 
 
 
 

0 1 0 0 0
−𝑘1 + 𝑘2 −2𝜁 −𝑘2 0 𝜒

0 0 0 1 0
𝑘2 0 −𝑘2 −2𝜁 0
0 −𝜅 0 𝜅 −𝛬]

 
 
 
 

{
 
 

 
 
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5}
 
 

 
 

+

[
 
 
 
 
0
1
0
0
0]
 
 
 
 

𝑓 𝑐𝑜𝑠 𝛺𝑡  

(6)  

 

Replacing the given parameters in matrix given in equation 5 the LMI matrixes are: 

 

 

𝐴 =

[
 
 
 
 
0 1 0 0 0

−0.02 −0.02 −0.03 0 0.05
0 0 0 1 0
0.03 0 −0.03 −0.02 0
0 −0.5 0 0.5 −0.05]

 
 
 
 

,  𝐵1 = 

[
 
 
 
 

0
0.083 𝑐𝑜𝑠 𝛺𝑡

0
0
0 ]

 
 
 
 

, 

   𝐵2 = 

[
 
 
 
 
1
1
1
1
1]
 
 
 
 

 𝑒 𝐶 =  [1 0 0 0 0]   

(7)  

 

 

3 Efficiency Gain 
 

Solving the LMI the gain vector is 𝐿 = [1.9684    5.2764   -0.3491    4.5054    

0.4388]. The controlled system is stable since all eigenvalues have real part negative: -

0.1287+0.3302i; -0.1287-0.3302i; -0.0440+0.1804i; -0.0440-0.1804i; -0.0498+0.0000i. 

Deriving the feedback matrix from the gain vector 𝐿 it is determined the feedback 

parameters of control: k1 = 0.0001, k2 = 0.0001, ζ = 2.6482, χ = 0.00001, κ = 5.7764 

and Λ = 0.4888. Replacing feedback parameters of control in the mathematical model of 

the system and solving the differential equations by applying Runge-Kutta forth order 

and considering initial conditions 𝑥1(0) = 1, 𝑥2(0) = 0, �̇�1(0) = 0, �̇�2(0) = 0 and 

𝜈(0) = 0  it is determined the displacement, velocity and voltage rate considering 

samples a from 0 to 2,500 in interval of 0.1 totalizing 25,000 time samples. The Figure 

4a and 4b shows displacement and velocity of mass m1. The Figures 4c and 4d shows 

displacement and velocity of mass m2. The Figure 4e shows the system output voltage. 

 

a)  

 

b)  
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c)  

 

d)  

 
e)  

 
 

Figure 4: Gray Line - without control; Black Line - Controlled System. 

 

 

4 Conclusions 
 

The LMI controller rises as a promised solution to enhance energy harvesting 

efficiency for linear mathematical models. In case of multimodal the appliance of a LMI 

to enhance energy harvesting efficiency appears as a novel solution. The overall gain of 

energy in terms of output voltage is shown in Table 1. 

 

Table 1: Overall gain for active control. 

 
 RMS voltage rate 

Without control 0.0692 

Active LMI Controller 0.2862 

Gain 4.136 

 

It is presented a gain up to 4 times which represent a promise solution to enhance 

efficiency in multimodal energy harvesting system. 
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