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Abstract. The purpose of this paper is first to review the standard Generalized Predictive
Controller (GPC) design, second, to establish a comparative study between the GPC with
a prefilter Tf (q−1), the GPC with a parameter of the future reference trajectory and the
GPC that includes a positional model but with a integral polynomial weighing factor for
the error. Simulation results are shown and discussed.
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1 Introduction

The Generalized Predictive Controller (GPC) has been successfully implemented in
several applications and is still under investigation [1–4]. Over the last decades different
design formalisms have been developed with the aim to guarantee closed-loop dynamic
aspects like performance, stability, robustness and input constraints.

The purpose of this paper is to review the standard GPC design of [1] and to establish
a comparative study between T-GPC, GPC with a filter Tf (q−1) 6= 1 [2], FR-GPC (Filter
Reference GPC), GPC with a parameter of the future reference trajectory [5] and FP-GPC
(Filter Positional GPC), GPC that uses a positional model but with integral polynomial
weighing factor for reference and output signals [6].

The idea is to investigate how the GPC filtered affect the performance of the closed-loop
system in terms of reference tracking, disturbance attenuation, stability and robustness.
Additionally, to show the capacity of the FP-GPC in dealing with setpoint tracking and
disturbance rejection with very satisfactory performance between GPC controllers (stan-
dard GPC, T-GPC and FR-GPC). Numerical essay demonstrates the effectiveness of the
GPC control algorithms and performance indicators are shown.
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This paper is organized as follows. Sections 2, 3, 4 and 5 present briefly each control
design for the GPC, T-GPC, FR-GPC and FP-GPC, respectively. Section 6 describes a
comparative study between the controllers, examining aspects such as transfer function,
sensitivity function and control law. Section 7 shows a numerical simulation. Finally,
conclusions are given in Section 8.

2 Standard GPC Design

The standard GPC design proposed in [1] can be derived by the following discrete
transfer function on the CARIMA model (Controlled Auto-Regressive Integrated Moving
Average):

A(q−1)y(t) = q−dB(q−1)u(t− 1) + Tf (q−1)
e(t)

∆
, (1)

where y(t) is the process output, u(t) is the control signal, e(t) is the zero mean white
noise, d is the dead-time, Tf (q−1) = 1 and ∆ = (1 − q−1). The roots of the polynomials
A(q−1) and B(q−1) are the open-loop poles and zeros, respectively.

The standard GPC control law is obtained by minimizing the cost function given by

J =

Ny∑
j=1

δ [ŷ(t+ j/t)− w(t+ j)]2 + λ

Nu∑
j=1

[∆u(t+ j − 1)]2 , (2)

where w(t) is the setpoint, δ and λ are error and control weighting, respectively, Ny is the
output prediction horizon and Nu is the control horizon. From minimization of the cost
function (2), the control law of the unconstrained GPC is described by

∆u(t) = KGPC(w − f) =

Ny∑
j=1

kj [w(t+ j)− f(t+ j)] , (3)

where KGPC is the first row of the matrix
(
GTG+ λI

)−1
GT , f is the free response, w is

the reference. Using the GPC design, defined in (3), then the RST canonical form of the
controller is written as

R(q−1)∆u(t) = T (q−1)w(t)− S(q−1)y(t). (4)

The equation (4) represents the polynomial control structure of two degree of free-
dom, where R(q−1), S(q−1) and T (q−1) are polynomials and obtained from (3). The RST
canonical form have filters in the reference represented by T (q−1), in the output repre-
sented by S(q−1) and in the error signal represented by 1/∆R(q−1) [7]. The block diagram
of the RST structure from the GPC design is shown in Figure (1).

3 T-GPC Design

Now, consider the equation (1) where Tf (q−1) is a polynomial which implements a
prefilter as follows (1 − βq−1). The T-GPC control algorithm is obtained by minimizing
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Figure 1: Polynomial RST control structure for GPC design.

the cost function of equation (2). The control law is equivalent from the standard GPC
design (exhibits differences in the free response and GPC gain (KGPC)) and is calculated
as follows:

∆u(t) =
∼
KGPC(w −

∼
f) =

∼
KGPC

w(t)−
∼
F j(q

−1)

Tf (q−1)
y(t)−

∼
Hj(q

−1)

Tf (q−1)
∆u(t− 1)

 . (5)

Diophantine equations, for the T-GPC synthesis, are solved using Tf (q−1) = (1−βq−1),

then modifying the design matrices
∼
G,

∼
H,

∼
F and, consequently, the polynomials R(q−1),

S(q−1) and T (q−1).

4 FR-GPC Design

Assuming equation (1) with Tf (q−1) = 1, the FR-GPC control law is given by mini-
mizing the cost function of equation (2), where the future reference w(t+ j) is calculated
by the following equation [1, 5]:

w(t) = y(t), w(t+ j) = (1− γ)r(t) + γw(t+ j − 1), (6)

where 0 ≤ γ < 1 and r(t) is the setpoint. To the future term T (q−1)w(t + j) of the
standard GPC law, the future reference is replaced by

w(t+ j) = γjy(t) + (1− γj)r(t). (7)

Then, the future term can be represented as follows:

T (q−1)w(t+ j) = trr(t) + tyy(t), tr =

Ny∑
j=1

(1− γj)kj , ty =

Ny∑
j=1

γjkj . (8)

The FR-GPC control law is written as

∆u(t) = KGPC((1− γj)w − f − γjy). (9)
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5 FP-GPC Design

Consider the deterministic CAR model (Controlled Auto-Regressive) of the controlled
plant characterized by the following positional discrete transfer function:

A(q−1)y(t) = q−dB(q−1)u(t− 1). (10)

The GPC control law is obtained by minimizing the cost function of the form

J =

Ny∑
j=1

{φy(t+ j)− φw(t+ j)}2 + λ

Nu∑
j=1

u2(t+ j − d− 1), (11)

with φy(t+ j) and φw(t+ j) auxiliary output and reference variables and are defined as

φy(t) = P (q−1)y(t) =
Kαα(q−1)

∆
y(t), φw(t) = P (q−1)w(t) =

Kαα(q−1)

∆
w(t). (12)

The term φy(t+j) is replaced by the estimated value with the equation (10) multiplied
by P (q−1) and it can be rewritten as

∆A(q−1)φy(t+ j) = Kαα(q−1)B(q−1)u(t+ j − d− 1). (13)

Then, the minimization of the cost function of the FP-GPC for the unconstrained case,
generates the control vector and is calculated by

u(t) = KGPC [Φw(t)− Φf (t)], (14)

which is the similar notation of the incremental GPC design proposed by [1] for the
incremental fixed structure. It is noteworthy that the FP-GPC design is an alternative
synthesis to the standard formalism of the GPC and more details of the FP-GPC design
can be found in [6].

6 Comparative Analysis of GPC Controllers

This section shows a comparative study between standard GPC [1], T-GPC [2, 3],
FR-GPC [1, 5] and FP-GPC [6] control algorithms, in order to evaluate the feasibility of
these controllers regarding the performance and robustness to treat reference tracking,
disturbance attenuation and model-plant mismatch.

The block diagram of Figure (1) can be used for analysis of the four controllers on the
RST structure with changes on polynomials R(q−1), S(q−1), T (q−1) for each controller.
For the case of the T-GPC and FP-GPC there is the inclusion of the Tf (q−1) and Kαα(q−1)
filters, respectively. Table (1) shows the design equations of the polynomials R(q−1),
S(q−1), T (q−1) for GPC controllers.

From the closed-loop transfer function, sensitivity function and control law, as shown
in Table (2), it is possible to make the following observations:
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Table 1: Comparative equations of standard GPC, T-GPC, FR-GPC and FP-GPC.

R(q−1) S(q−1) T (q−1)

GPC
[
1 + q−1

∑Ny
j=1 kjHj

] ∑Ny
j=1 kjFj

∑Ny
j=1 kjq

j

T-GPC

[
Tf (q−1)+q−1

∑Ny
j=1 kj

∼
Hj(q

−1)

Tf (q−1)

] ∑Ny
j=1

kj
∼
F j

Tf (q−1)

∑Ny
j=1 kjq

j

FR-GPC
[
1 + q−1

∑Ny
j=1 kjHj

] ∑Ny
j=1 kj(Fj − γj)

∑Ny
j=1(1− γj)kjqj

FP-GPC
[
1 + q−1

∑Ny
j=1 kjHj

]
u(t)

∑Ny
j=1 kjFjKαα(q−1)

∑Ny
j=1 kjq

jKαα(q−1)

Table 2: Comparative transfer functions of GPC, T-GPC, FR-GPC and FP-GPC.

- Transfer Function

Standard GPC

y(t) = T (q−1)B(q−1)
A(q−1)∆R(q−1)+B(q−1)S(q−1)

w(t− d)

S = A(q−1)∆R(q−1)
A(q−1)∆R(q−1)+B(q−1)S(q−1)

u(t) = 1
∆R(q−1)

[
T (q−1)w(t)− S(q−1)y(t)

]
T-GPC

y(t) =
Tf (q−1)B(q−1)T (q−1)

[A(q−1)∆R(q−1)+B(q−1)S(q−1)]Tf (q−1)
w(t− d)

S = A(q−1)∆
∼
R(q−1)

[A(q−1)∆R(q−1)+B(q−1)S(q−1)]Tf (q−1)

u(t) =
Tf (q−1)

∆
∼
R(q−1)

[
T (q−1)w(t)−

∼
S(q−1)
Tf (q−1)

y(t)

]

FR-GPC

y(t) = B(q−1)tr(q−1)
A(q−1)∆R(q−1)+B(q−1)(S(q−1)−ty(q−1))

w(t− d)

S = A(q−1)∆R(q−1)
A(q−1)∆R(q−1)+B(q−1)(S(q−1)−ty(q−1))

u(t) = 1
∆R(q−1)

[
tr(q

−1)w(t)−
(
S(q−1)− ty(q−1)

)
y(t)

]
FP-GPC

y(t) = Kαα(q−1)B(q−1)T (q−1)

A(q−1)∆R(q−1)+Kαα(q−1)B(q−1)S(q−1)
w(t− d)

S = A(q−1)∆R(q−1)

A(q−1)∆R(q−1)+Kαα(q−1)B(q−1)S(q−1)

u(t) = Kαα(q−1)

∆R(q−1)

[
T (q−1)w(t)− S(q−1)

]

T-GPC, FR-GPC and FP-GPC controllers are equivalent, but with different features,
according to design filters Tf (q−1), ty(q

−1), tr(q
−1) and Kαα(q−1) for each control loop.

For the T-GPC case, the two degree of freedom structure can be exploited only for dis-
turbance attenuation which depends on Tf (q−1), however the reference tracking is affected
by the calibration of the GPC parameters.

In the case of the FR-GPC and FP-GPC, both reference tracking and disturbance
rejection can be exploited by the filters ty(q

−1), tr(q
−1) and Kαα(q−1), respectively.

On the other hand, the prefilter Tf (q−1) does not modify the closed-loop poles and
control law in the T-GPC, however, ty(q

−1) and Kαα(q−1) changes the robustness, closed-
loop stability and control law in FR-GPC and FP-GPC controller designs.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 4, N. 1, 2016.

DOI: 10.5540/03.2016.004.01.0014 010014-5 © 2016 SBMAC

http://dx.doi.org/10.5540/03.2016.004.01.0014


6

7 Simulation Results

This essay is based on a numerical simulation of a multiple poles system described
in [5]. Plant and model transfer functions are given by

Gp(s) =
1

(s+ 1)8 , Gm(s) =
0.007

(s2 + 0.73s+ 0.1)
. (15)

Figure (2) shows the closed-loop responses for the GPC controllers, using step setpoint
changes and a constant disturbance on the plant output (10 % of the setpoint magnitude
value at time t = 300 s). The controllers have equivalent dynamic behavior, but the
FP-GPC has better reference tracking and disturbance attenuation performance than the
others controllers with small control variance and low output oscillation. The tuning
parameters of the controllers are Ny = 4, Nu = 1, λ = 0.5 and sampling period of 1 s.
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Figure 2: System response to the GPC, T-GPC, FR-GPC and FP-GPC.

Filter tuning parameters of each controller are selected from different ways. For the
T-GPC, the polynomial Tf (q−1) is tuning using the guidelines suggested in [2], where the
time constant of the filter lies in the neighborhood of the dominant poles of A(q−1). For
the FR-GPC, the parameter γ is the same used in [5]. For the case of the FP-GPC, the
filter parameters (Kα and α(q−1)) are calibrated through a multi-objective optimization
algorithm based on the sensitivity function and Integrated Absolute Error (IAE) criterion.

Table (3) shows the filter parameters for each GPC design and the performance indeces
(IAE and TVC - Total Variation of Control) of the four controllers. We can observed that
the FP-GPC performance is better than the others controllers (smaller values of IAE and
TVC).

8 Conclusions

This paper has investigated a comparative study between the standard GPC, T-GPC,
FR-GPC and FP-GPC controllers, analyzing how the filter tuning parameters are affect-
ing the performance of the closed-loop system, evaluating reference tracking, disturbance
attenuation and stability conditions.
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Table 3: Tuning parameters and IAE, TVC criteria.

Filter Values IAE TVC

GPC - 17.6382 9.1361

T-GPC Tf (q−1) = (1− 0.45q−1) 17.2660 9.2079

FR-GPC γ = 0.69 15.7137 6.5636

FP-GPC Kαα(q−1) = 2.4375(1− 0.7294q−1) 11.1863 6.4160

Initially, the paper described briefly the control design for the GPC, indicating the
process model, cost function and control law, achieving the RST canonical form of the
controller. Next, it was presented a comparative analyses of the polynomials R(q−1),
S(q−1), T (q−1) and the closed-loop transfer function, sensitivity function and control
law for each controller, highlighting the influence of the filter design on the closed-loop
polynomials and, consequently, on the performance and robustness of the system.

Finally, a numerical simulation was shown to a multiple poles system with model-plant
mismatch to assess not only the stability, performance and robustness of GPC controllers
for setpoint tracking and disturbance rejection, but also to demonstrate that the FP-GPC
has performed best performance than the others GPC controllers.
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