
1 

 

Proceeding Series of the Brazilian Society of Computational and Applied 

Mathematics 
 

 
 

 

A study of Earth-Moon Trajectories based on Analytical 

Expressions for the Velocities Increments 

 
Luiz Arthur Gagg Filho

1

 

Departamento de Matemática, Instituto Tecnológico de Aeronáutica - ITA, São José dos 

Campos, SP. 

Sandro da Silva Fernandes
2

 

Departamento de Matemática, Instituto Tecnológico de Aeronáutica - ITA, São José dos 

Campos, SP. 

 

 

 
Abstract. A study of Earth-Moon bi-impulsive trajectories is presented in this paper. The 

dynamic model utilized to describe the motion of the space vehicle is the classic planar circular 

restricted three-body problem (PCR3BP). The velocities increments are obtained through 

analytical expressions, which are derived from the development of the complete Jacobi Integral 

expression. In order to determine the trajectories, a two-point boundary value problem 

(TPBVP) with prescribed Jacobi Integral is formulated. In this way, internal and external 

trajectories are determined with several times of flight. The results show that this method 

facilitates the determination of Earth-Moon trajectories with large time of flight; it offers a 

better intuition of the problem since the Jacobi Integral is specified; it allows several kind of 

studies since all Earth-Moon trajectories can be obtained; and, it provides a good estimate for 

optimization algorithms which can be, eventually, applied in order to minimize the total fuel 

consumption.      
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1 Introduction 
 

The problem of transferring a space vehicle from one orbit to another has been 

growing in importance in last decades. The Grail mission is one of the latest mission to 

the Moon and its objective is to study the lunar gravitational field [7] in order to find 

some information about the origin of the Moon. Besides the science, the transferring of a 

space vehicle is used in commercial applications such as the maintenance of satellites. In 

the majority of the applications, the actuators of the space vehicle are assumed to be 
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impulsive, which means that they produce an instantaneous velocity increment to put the 

vehicle in the desired trajectory. The determination of impulsive trajectories in complex 

dynamic models has become more studied since the second half of the 20th century until 

nowadays. In this way, two kinds of studies can be highlighted. The first one is 

characterized by using optimization algorithms, especially those that use gradient 

methods in order to minimize the fuel consumption, which is represented by the total 

velocity increment [5].  The second kind of study consists in exploring more deeply the 

dynamic of the restricted three body problem, and, uses the notion of weak stability 

boundary [1] or the invariant manifolds [4]. Da Silva Fernandes and Marinho [3] have 

used a gradient method with the Newton-Raphson algorithm to find optimal Earth-Moon 

trajectories considering the gravitational influence of the Sun. However, these 

optimizations processes have been proved to be sensitive to the initial conditions. On the 

other hand, if external trajectories or internal trajectories with a large time of flight are 

desirable, the known patched-conic approximation could not be used as initial condition. 

Defining the initial conditions in these cases requires a deep intuition of the problem, 

which is, sometimes, impossible to acquire due to the several number of parameters to 

adjust, and, to the natural sensitivity of the orbital dynamic problems. Therefore, a 

multidimensional search is usually needed to determine the initial conditions. The 

greater the number of parameters to adjust larger is the dimension of the search space. 

Topputo [6], for instance, has done a search in a four dimensional space to generate the 

initial conditions in his algorithm to obtain optimal Earth-Moon trajectories with 

different times of flight. A reduction in the dimension of the search space decreases 

significantly the processing time. The work of Da Silva Fernandes and Marinho [2], 

likewise Topputo [6], studies Earth-Moon trajectories with different times of flight and, 

also, has four variables to adjust as initial condition.  

The present work is based on the paper of Da Silva Fernandes and Marinho [2], but 

the initial conditions of both velocity increments are obtained through analytical 

expressions originated by developing the Jacobi Integral in the planar circular restricted 

three body problem (PCR3BP). A new two-point boundary value problem (TPBVP) is 

formulated, where the search space of the initial conditions is reduced.  

 

 

2 Objective 
 

The main purpose of this work is to determine Earth-Moon trajectories with large 

times of flight in the classic planar circular restricted three-body problem (PCR3BP) 

through a two-point boundary value problem with a prescribed value of the Jacobi 

Integral.  

 

 

3 Methods 
 

The purpose of this formulation is motivated by the orbital transfer problem, in which 

is desirable to transfer a space vehicle with infinitesimal mass from a low Earth orbit 

(LEO) to a low Moon orbit (LMO) by the application of two velocities increments. 

These increments are assumed to be impulsive and tangential to the terminal orbits. The 
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first velocity increment is applied in the LEO and it accelerates the space vehicle putting 

it in a transfer trajectory. The second velocity increment is applied in the arrival near the 

Moon and it slowdowns the space vehicle, circularizing its movement in the LMO. The 

terminal orbits are assumed to be circular. In this work, the dynamical model utilized to 

describe the motion of the vehicle is the classic PCR3BP. With this problem in mind, the 

following mathematical formulation is the foundation to construct a TPBVP in order to 

solve it. In this way, the next topics show the dynamic model of the PCR3BP and the 

development of the Jacobi Integral in order to obtain analytical expressions for the 

velocities increments. Finally, the TPBVP is stated.  

Assume that the space vehicle has coordinates  ,P Px y  in an inertial reference frame 

with origin at the CM point (center of mass of the Earth-Moon system), where the 

subscript P defines quantities related to the space vehicle. The motion of the space 

vehicle is then described by the following differential equations: 

 

   3 3

E M
p p E p M

EP MP

x x x x x
r r

 
       (1) 

   3 3

E M
p p E p M

EP MP

y y y y y
r r

 
      , (2) 

 

where the subscripts E and M define quantities related, respectively, to the Earth and to 

the Moon. Thus, E is the gravitational parameter of the Earth, and, M is the 

gravitational parameter of the Moon. The operator   above the variables represents time 

derivatives quantities. EPr  and MPr  are the radial distances of the vehicle to the Earth 

and to the Moon respectively. 

 

 

3.1 Analytical expressions for the velocities increments 

 
Consider the complete expression of the Jacobi Integral as below: 

     2 2 2 2 21
, , , 2  

2

E M
p p p p p p p p

EP MP

J
r r

 
        

 
      

 
 , (3) 

where  , , ,p p p pJ      is the Jacobi Integral,  ,p p   and  ,p p   are the position and 

velocity coordinates of the space vehicle in a rotating reference frame G , which contains 

the orbital plane of the Moon and with origin at the CM point. The   axis points toward the 

Moon at each time instant t, and, the   axis is perpendicular to the   axis. 

From the Jacobi Integral, one finds that the first velocity increment 1v , applied in the 

LEO, is given by 
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where D is the mean distance from the Earth to the Moon,   3/M E D     is the 

angular velocity of the Moon around CM, and EP  is the angle between the position vector 

of the space vehicle with respect to the Earth and the x axis of the inertial reference frame. 

By an analog development from the Jacobi Integral, one finds that the second velocity 

increment 2v , applied in the LMO, is given by: 
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, 

 (5) 

where MP  is the angle between the position vector of the space vehicle with respect to the 

Moon and the x axis of the inertial reference frame.  

The analytical expressions given by Eqs. (4) and (5) provide a way to estimate the 

velocities increments 1v  and 2v , respectively, assuming that a value of the Jacobi Integral 

is prescribed. An analysis of magnitude order shows that the terms which depend on  0EP  

and  MP T  can be neglected, since their contributions to the velocities increments are 

insignificant. Hence, the following approximations are suggested in order to determine the 

velocities increments:   1EPcos    in Eq. (4); and,    1MPcos T T    in Eq. (5).  

 

 

3.2 The two point boundary value problem (TPBVP) 

 
Based on the analytical expressions for the velocities increments determined in the 

preceding section, a TPBVP is formulated for the PCR3BP in order to obtain Earth-Moon 

trajectories with a prescribed value of the Jacobi Integral. The TPBVP is enunciated as 

below: 

“For a value of the Jacobi Integral  , , ,p p p pC J     , determine the set of variables 

    0 , ,EP MP T T   that satisfies the specified final constraints of the differential equations 

(1) and (2). ”     

Note that this problem has three variables to be iterated. However, the search space of 

the variable   is reduced when the total time of flight of the space vehicle is relatively 

known. Moreover, this formulation allows setting the Jacobi Integral previously which gives 

three advantages: increases the problem intuition since the Jacobi Integral already provides, 

initially, an idea of the total fuel consumption through Eqs. (4) and (5); the determination of 
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the desired trajectories is facilitated, especially for those trajectories with large time of flight; 

and, a detailed study of the Kepler’s energy of the space vehicle in the arrival of the low 

Moon orbit (LMO) can be developed.   

 

 

4 Results 
 

Table 1 shows the data used in the numerical simulations. The LEO altitude is 167 km, 

and, the LMO altitude is 100 km. The space vehicle can arrive in the LMO in the clockwise 

or counterclockwise sense. In this paper, only clockwise arrivals are considered. Several 

trajectories are obtained considering the Jacobi Integral in the interval [1, 2.93] km
2
/s

2
. 

Table 2 shows some results of different trajectories for the same Jacobi Integral value (C = 

1.20 km
2
/s

2
). The trajectories are obtained through the TPBVP described in the previous 

section. Figures 1-4 illustrate others trajectories with different configurations of time of 

flight and/or Jacobi Integral values.   

  

Table 1: Parameters specification 

 

M  (angular velocity of the Moon with respect to the Earth) 2.649 x 10
-6

 rad/s 

Mv  (linear velocity of the Moon with respect to the Earth) 1.018 km/s 

ER  (Earth’s radius) 6378.2 km 

MR  (Moon’s radius) 1738 km 

E  398600 km
3
/s

2
 

M  4902.83 km
3
/s

2
 

D  384400 km 

 

Table 2: Trajectories with different times of flight at C = 1.20 km
2
/s

2
. 

 

 1  [ / ]v km s   2  [ / ]v km s    [ / ]TOTALv km s    [ ]T days    0 [ ]EP   Feasiblity 

3.196574 1.051307 4.247881 130.0962 58.831 Yes 

3.196574 1.051318 4.247892 44.9697 66.425 Yes 

3.196574 1.051319 4.247892 2.3911 -135.535 Yes 

3.196574 1.051318 4.247892 98.3274 410.058 Yes 

3.196574 1.051307 4.247881 84.8219 203.858 Yes 

3.196574 1.051319 4.247893 72.3106 67.588 Yes 

3.196574 1.051307 4.247881 59.1727 -145.870 Yes 

 

 

5 Discussion 
 

Table 2 and Figures 1 and 2 show that trajectories with different times of flight can be 

found for the same Jacobi Integral value, which means that the fuel consumption, 
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represented by TOTALv , is almost the same as shown in Table 2. The procedure described by 

the TPBVP facilitates the determination of trajectories with large times of flight as seen in 

Figures 1 and 2 where trajectories with 202.17 and 284.02 days were obtained. Figures 

3 and 4 compare an internal trajectory with an external trajectory with times of flight 

relatively the same. The external trajectory, Figure 4, has higher fuel consumption 

than the internal trajectory, Figure 3. This effect occurs due to the first velocity 

increment, which has to be at least 3.2 km/s approximately for the space vehicle 

reach the Earth Sphere of Influence (SOI) in order to perform an external trajectory. 

Therefore, the internal trajectories generally consume less fuel than external 

trajectories considering the same time of flight. However, significant fuel 

consumption can be saved for external trajectories if the Sun influence is considered.     

 

    

6 Conclusions 
 

This work proposes a new method to determine Earth-Moon trajectories in the PCR3BP 

through a TPBVP with the Jacobi Integral previously specified. In this way, internal and 

external trajectories are obtained with different times of flight. The results show that this 

method facilitates the determination of trajectories with large times of flight. For future 

work, the trajectories can be optimized, and, the Sun influence can be analyzed.  
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Figure 1: C = 2.90 km
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Figure 2: C = 2.90 km
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Figure 3: C = 2.80 km
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Figure 4: C = 1.20 km
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