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Abstract. In this paper, analytical solutions, which include the short periodic terms, for the 

problem of optimal time-fixed low-thrust limited power transfers (no rendezvous), in an 

inverse-square force field, between coplanar orbits are revisited. These solutions are expressed 

in classical orbital elements for transfers between elliptical orbits and in nonsingular elements 

for transfers between orbits with small eccentricities. In both cases, the solutions are derived 

through canonical transformation theory. A brief discussion about the solution of the two-point 

boundary value problem of going from an initial orbit to a final orbit at the prescribed final 

time, based on the analytical solutions, is also presented. 
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1 Introduction 
 

 The main purpose of this work is to revisit analytical solutions for optimal low-

thrust limited-power transfers between coplanar orbits in an inverse-square force field. 

This study has been motivated by the renewed interest in the use of low-thrust 

propulsion systems in space missions in the last thirty years. Important space missions 

such as NASA-JPL Deep Space 1 and ESA-SMART1 have made use of low-thrust 

propulsion systems. Low-thrust electric propulsion systems are characterized by high 

specific impulse and low-thrust capability (the ratio between the maximum thrust 

acceleration and the gravity acceleration on the ground is small, between 10
-4

 and 10
-2

) 

and have their greatest benefits for high-energy planetary missions. Several researchers 

have obtained numerical and analytical solutions for several maneuvers involving 

specific initial and final orbits and specific thrust profiles. In the analytical studies, 

                                                 
1
 sandro@ita.br 

2
 fchagas.carvalho@gmail.com 

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 4, N. 1, 2016.
Trabalho apresentado no DINCON, Natal - RN, 2015.

DOI: 10.5540/03.2016.004.01.0028 010028-1 © 2016 SBMAC

http://dx.doi.org/10.5540/03.2016.004.01.0028


averaging techniques and perturbation methods are applied and analytical solutions of 

the averaged equations, as well as first order solutions which include short periodic 

terms, are obtained [1-5].  

 The authors have presented a complete analytical solution, which includes the short 

periodic terms, for the problem of optimal low-thrust limited-power transfers between 

arbitrary elliptical coplanar orbits [2] and for transfers between orbits with small 

eccentricities [1] by using a canonical approach based on canonical transformation 

theory, including the Hamilton-Jacobi theory and a perturbation method based on Lie 

series. Classical orbital elements are used for describing the analytical solution in the 

case of transfers between elliptical orbits, and, a suitable set of nonsingular elements are 

used in the case of transfers between orbits with small eccentricities. These first order 

analytical solutions for time-fixed transfers between coplanar orbits are then revisited 

and numerical results are presented for two arbitrary missions.  

 

2 Formulation of the optimization problem 
 

 For a low-thrust limited-power propulsion system – LP system, the fuel 

consumption is described by the variable J  defined as [5] 

0

21

2

t

t
J dt  ,                       (1) 

where  is the magnitude of the thrust acceleration vector γ , used as control variable. 

The consumption variable J  is a monotonic decreasing function of the mass m  of the 

space vehicle, such that the minimization of fJ  is equivalent to the maximization of fm . 

 Consider the motion of a space vehicle M, powered by a limited-power engine in an 

inverse-square force field. At time t , the state of a space vehicle M is defined by the 

radial distance r  from the center of attraction, the radial and circumferential 

components of the velocity, rv  and sv , and the fuel consumption J . 

 The optimization problem can be formulated as a Mayer problem of optimal control 

as follows [5]: It is proposed to transfer the space vehicle M from the initial state 

0 0 0( , , ,0)r sr v v  at time 0t  to the final state ( , , , )f r f s f fr v v J  at time ft , such that the final 

consumption variable fJ  is a minimum. The duration of the transfer 0ft t  is specified. 

In the two-dimensional formulation, the state equations are given by 

 
r

dr
v

dt
    

2

2

sr
vdv

R
dt r r


      s r sdv v v

S
dt r

      2 21

2

dJ
R S

dt
  ,          (2) 

where  is the gravitational parameter, R  and S  are the radial and circumferential 
components of the thrust acceleration vector, respectively. The performance index is 

( )fIP J t .                       (3) 

For LP system, there are no constraints on the thrust acceleration vector.  

 According to the previous work [1], the maximum Hamiltonian *H  is defined by  

 
2

* 2 2

2

1

2r s r s

s r s

r r v v v v

v v v
H v p p p p p

r rr

 
      

 
,               (4) 

and the optimal thrust acceleration is given by 

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 4, N. 1, 2016.

DOI: 10.5540/03.2016.004.01.0028 010028-2 © 2016 SBMAC

http://dx.doi.org/10.5540/03.2016.004.01.0028


3 

 

*

rvR p    *

svS p .                    (5) 

 

3 Analytical Solutions 
 

 A first order analytical solution for the system of differential equations governed by 

the maximum Hamiltonian, which includes short periodic terms, can be derived 

applying canonical transformation theory, as described in [2] for transfers between 

elliptical orbits and in [1] for transfers between orbits with small eccentricities.  

The optimal low-thrust power-limited trajectories for transfers between coplanar 

elliptical orbits are then described in a set of classical orbital elements by the following 

equations: 

     
 
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     (8) 

with a , e , …, p  given through the following equations 

a a    sine          a ap p     
cos

e

p
p


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and, 

0

0

20
0

( )
4 1

1
2

a

a
a t

a
t a p t




 

  
   

 
E

   
0 0

3

2 2 2 20 0

1 3 2

1 1
5csc 4

8
a a

a a
p p p k

a a a


    
             
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with the auxiliary constants 0k , 1k  and 2k  defined as functions of the initial value of the 

adjoint variables by 
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The constants C , 
1C , 

2C  and E can also be written as functions of the initial value 

of the adjoint variables: 
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The initial conditions are defined by   00a a  , 0(0) sine    and   00   , and, 

0  is obtained from 0 1 0cos cos cosk  . The eccentric anomaly E   is computed from 

Kepler´s equation with the mean anomaly M   given by 
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 . 

The optimal low-thrust power-limited trajectories for transfers between coplanar 

orbits with small eccentricities are then described by the following equations: 
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with a , …, kp   given by  
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with C and E  now given in terms of the initial conditions by 
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Note that the mean latitude   in equations above is given by 
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The set of nonsingular orbital elements are related to the classical orbital elements 

through the equations 

cosh e       sink e       M   ,  

where e  is the eccentricity,  is the argument of periapsis and M  is the mean anomaly, 

and, a  denotes the semi-major axis. For simplicity, primes are omitted in the above 

equations. In both solutions, primes are used to denote new variables introduced through 

the canonical transformations built to obtain the analytical solution.  

 The consumption is given by   10 SttJ E , with    1 1 1 0S S t S t   , where 

1S  is the generating function built through Hori method in both cases. 

 

4 Solution of the Two-Point Boundary Value Problem 
 

In this section, an iterative algorithm based on the complete first order analytical 

solutions, is briefly described for solving the two-point boundary value problem of 

going from an initial orbit 0O  to a final orbit fO  at the prescribed final time ft .  

For a given final time ft , the set of Eqns. (6), (7) and (8), can be represented as  
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where    1 f fy t a t ,    2 f fy t e t  and    3 f fy t t . Note that 
0ap  , 

0ep   and 
0

p  

appear explicitly in the short periodic terms and also implicitly through  a t ,  e t  , 

 t  and  M t . Thus, the functions ig , 1,2,3i  , are nonlinear in these variables. 

Similarly, the set of Eqns. (9), (10) and (11), can be represented as 
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0ap  , 0hp   and 

0kp   

appear explicitly in the short periodic terms and also implicitly through  a t ,  h t  , 
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 k t  and  t . Thus, the functions 
ig , 4,5,6i  , are also nonlinear in these variables.  

So, the two-point boundary value problem can be stated as: find the initial adjoint 

variables such that the prescribed final values of the orbital – classical or nonsingular – 

elements are satisfied. This boundary value problem can be solved through a Newton-

Raphson algorithm. 

 

5 Results 
 

In what follows, the analytical solutions described in the preceding sections are 

applied in the analysis of two missions considering time-fixed low-thrust transfers 

between coplanar orbits. The first one of these missions involves the transfer from Earth 

to Venus for several times of flight, and, the following assumptions are considered: 1. 

the orbits of the planets are ellipses with small eccentricities; 2. the orbits of the planets 

lie in the plane of the ecliptic, i.e. the inclination of the orbital plane of Venus is 

neglected; 3. the flight of the space vehicle takes place in the plane of the ecliptic; 4. 

only the heliocentric phase is considered; that is, the attraction of planets on the 

spacecraft is neglected. The orbital elements of Earth and Venus are given in Table 1 

(Transfer 1). 

The second mission considers an arbitrary transfer with orbital elements of the initial 

orbit 0O  and of the final orbit fO  also defined in Table 1 (canonical units are used). 

The values of the consumption variable J are presented in Table 2. In both cases, one 

sees that the fuel consumption decreases with the flight time. Figure 1 shows the time 

evolution of semi-major axis, eccentricity and the argument of periapsis for the 

second mission. Note the contribution of the periodic terms. 

 

Table 1: Orbital elements of the initial and final orbits. 

 

Transfer 
 

Orbit 

Orbital Elements 

Semi-major 
axis 

Eccentricity 
Argument of 
periapsis (º) 

1 
O0 1.000 0.0167 102.937 

Of 0.723 0.0068 131.563 

2 
O0 1.000 0.2000 15.00 
Of 0.750 0.1000 45.00 

 

Table 2: Consumption variable J. 

 

0ft t  25.0 50.0 75.0 100.0 125.0 150.0 

Transfer 1 6.16910
-4

 3.08810
-4

 2.06010
-4

 1.54610-
4
 1.23710

-4
 1.03110

-4
 

Transfer 2 6.34110
-4

 3.14510
-4

 2.09110
-4

 1.56610
-4

 1.25210
-4

 1.04210
-4
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Figure 1 - Time evolution of semi-major axis, eccentricity and  

argument of periapsis for Transfer 2. 

 

6 Conclusion 
 

 In this paper, analytical solutions for optimal time-fixed low-thrust limited power 

transfers (no rendezvous), in an inverse-square force field, between coplanar orbits are 

revisited and a brief discussion about the solution of the boundary value problem of 

going from an initial orbit to a final orbit at the prescribed final time is also presented. 

Two missions are analyzed and the contribution of the periodic terms is highlighted. 
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