1

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Inclusão da Não Linearidade de Atrito na Modelagem Matemática da Dinâmica de um Robô Gantry com Transmissão do Tipo Fuso de Esferas

Angelo Fernando Fiori¹ Ismael Barbieri Garlet² Odmartan Ribas Maciel³ Andrei Fiegenbaum⁴ Leonardo Bortolon Maraschin⁵ Antonio Carlos Valdiero⁶ Luiz Antonio Rasia⁷

Departamento de Ciências Exatas e Engenharias, UNIJUÍ, Panambi, RS

Resumo. Apresenta-se a identificação experimental da não linearidade do atrito em uma transmissão mecânica do tipo fuso de esferas no protótipo de uma junta do robô Gantry acionado por motorredutores de corrente alternada e inversores de frequência e a posterior inclusão do mapa estático na validação de seu modelo dinâmico.

Palavras-chave. Robôs de Pórtico, Acionamento Elétrico, Validação Experimental, Modelo Dinâmico, Identificação Experimental.

1 Introdução

Os sistemas robóticos, em especial os de pórtico (Gantry), vêm se tornando cada vez mais complexos e mais caros [5]. Os robôs do tipo Gantry são os mais robustos e

⁵ leonardo.maraschin@unijui.edu.br

¹ an@unochapeco.edu.br

² ismael.garlet@hotmail.com

³ odeijui@hotmail.com

⁴ andrei.fig@hotmail.com

⁶ valdiero@unijui.edu.br

⁷ rasia@unijui.edu.br

possuem uma cinemática mais simples por se utilizar juntas prismáticas, com eixos perpendiculares, sendo muito aplicados pela facilidade de programação [4] especialmente nas funções de guincho robô, usinagem CNC e cortes a laser.

No entanto, o controle preciso de robôs Gantry para aplicações depende da identificação e inclusão de não linearidades relevantes como o atrito às quais são pouco estudadas enquanto pesquisa teórica-experimental, sendo um problema amplo e em aberto. Diversas pesquisas ([2], [3], [8]), tem se esforçado em desenvolver estratégias mais precisas de controle e estudar dinâmicas e aspectos de projeto, sendo o diferencial deste trabalho a reunião de diferentes olhares sob o problema da modelagem dinâmica de sistemas mecânicos em robôs: modelagem matemática, testes de bancada, validação experimental, estudo de características constitutivas e inclusão da não linearidade do atrito no modelo dinâmico do robô Gantry.

Assim, tem-se por objetivo neste trabalho incluir a não linearidade de atrito na modelagem dinâmica do protótipo de uma junta de robô do tipo Gantry acionado por inversor de frequência e motorredutor de corrente alternada. Para isso foi construído um protótipo, desenvolvida uma metodologia para a identificação experimental das características do atrito (as quais estão apresentadas no mapa estático de atrito) e posteriormente feita à inclusão destas características no modelo dinâmico do robô Gantry o qual é validado experimentalmente.

2 Propósito

As características não lineares do atrito estão presentes em todos os mecanismos mecânicos que incorporem movimentos. Estudá-lo e compreendê-lo é importante para perceber seus efeitos em tais mecanismos, de modo a compensar e por consequência diminuir seus efeitos. O atrito gera erros/ciclos limites no seguimento de trajetórias causando efeitos de aderência-deslizamento (que alterna movimentos e repousos), oscilações (o movimento varia em torno de uma dada posição constante), perda de movimento (ocorre quando o sistema é detido no repouso em um intervalo de tempo onde a velocidade é nula), falha de quadratura (desvios do seguimento de um movimento de múltiplos eixos), dentre outras dificuldades para o controle e a estabilidade destacadas pelos autores e que são geradas pelo atrito [1].

O atrito exibe diversas características clássicas compostas pelo atrito estático, atrito de Coulomb, atrito viscoso e o atrito de arraste, baseados em mapas estáticos e características dinâmicas mais complexas como o atrito de Stribeck, atrito estático crescente, memória do atrito e o deslocamento de predeslizamento ([6] e [9]). As características do atrito dependem geralmente da velocidade, temperatura, sentido do movimento, lubrificação e desgaste das superfícies, da posição e da história do movimento, de modo que a escolha do modelo de atrito apropriado depende das características apresentadas [6].

A combinação das características de atrito (atrito estático, de Coulomb, viscoso, de arraste e a curva de Stribeck), resultam em uma função não linear semelhante a representada na Figura 1 onde são relacionadas a força de atrito (F_{atr}) e a velocidade em regime permanente $(\dot{y}(t))$.

Figura 1 - Combinação das Características do Atrito em Regime Permanente Fonte: Valdiero, 2012.

Um grande avanço na modelagem do atrito foi proposto por [1]. O modelo dinâmico denominado LuGre, é baseado nas microdeformações que ocorrem entre as superfícies de contato. Quando uma força tangencial é aplicada, as cerdas elásticas se deflexionarão como molas. Se estas deflexões forem suficientemente grandes, as cerdas irão deslizar (*stick-slip*). A velocidade é que determina a deflexão média das cerdas nos movimentos em regime permanente, a qual é modelada pelo atrito de Stribeck [6]. O atrito dinâmico é dado pela equação (1).

$$F_{atr} = \sigma_0 z + \sigma_1 \dot{z} + \sigma_2 \dot{y} \tag{1}$$

onde F_{atr} é a força de atrito dinâmico do modelo LuGre [1]. Os parâmetros dinâmicos $\sigma_0 e \sigma_1$ são o coeficiente de rigidez das deformações microscópicas entre as superfícies em contato durante o regime de predeslizamento e o coeficiente de amortecimento associado à taxa de variação de z (ou seja, \dot{z}), respectivamente. O parâmetro estático σ_2 é o coeficiente de amortecimento viscoso (*B*). A dinâmica do estado interno do atrito é denominado por z, o qual descreve a deflexão média das superfícies em contato durante a fase de atrito estático, ou, em outras palavras, a deformação do movimento de predeslizamento. Por fim, o parâmetro \dot{y} representa a velocidade relativa entre as superfícies. A equação (1) pode ser reescrita através da equação (2) que descreve o mapa estático do atrito contemplando as características descritas

$$F_{atr} = \left(F_c + (F_s - F_c)e^{-\left(\frac{\dot{y}}{\dot{y}_s}\right)^2}\right)sgn(\dot{y}) + \sigma_2 \dot{y}$$
(2)

onde F_c é a força de atrito de Coulomb, F_s é a força de atrito estático e \dot{y}_s é a velocidade de Stribeck.

Este modelo pode ser incorporado no modelo dinâmico da castanha do fuso de esferas, o qual é descrito através da equação (3) e que foi obtido através do método de Newton-Euler a partir do equilíbrio dinâmico no diagrama de corpo livre [7].

$$M_{eq}\ddot{y} + F_{atr_{eq}} = \frac{2\pi}{p}T_m \tag{3}$$

A equação (3) indica que a massa deslocada sobre o eixo fuso (M_{eq}) depende da aceleração (\ddot{y}) adicionada à força de atrito ($F_{atr_{eq}}$ descrita na equação (2)) resulta na força de reação que depende do passo (p) e do torque motor aplicado (T_m).

3 Método

Esta pesquisa é descritiva e exploratória classificando-se como bibliográfica e experimental. Para as simulações foi construído o protótipo de uma junta do robô Gantry com fuso de esferas sendo conectados sensores de deslocamento linear e angular. O robô será conectado a uma placa alemã dSPACE DS 1104, que integrada a um microcomputador, faz a aquisição dos sinais dos sensores e possui interface com o Simulink/MatLab[®] através do ControlDesk.

Os testes consistiam da regulagem de um potenciômetro em uma determinada marcação, a qual representava uma determinada velocidade de execução do movimento. Em cada marcação era executado o deslocamento positivo e negativo, variando a em cada teste a velocidade, conforme a viabilidade da instrumentação, da mais baixa a mais alta. Em cada teste são coletados os dados obtido através do ControlDesk e da instrumentação (wattímetro, voltímetro e amperímetro).

Em cada experimento foi gerado o gráfico de seu deslocamento e posteriormente, no trecho onde a velocidade é constante, ajustou-se uma reta. De posse das informações da velocidade (coeficiente angular de cada reta ajustada), estimou-se o torque motor. Para isso, utilizou-se a informação do fabricante sobre o rendimento do motorredutor CA para estimar o torque. Como em nenhuma das velocidades desempenhadas, o motor ultrapassou 50% de sua potência máxima utilizou-se um rendimento (η) constante dado pelo produto entre o rendimento do motor (74%) e do redutor (78%), para o cálculo da potência mecânica.

De posse dos dados experimentais, o modelo matemático da equação (3) foi implementado em diagrama de blocos com o mapa estático de atrito e simulado computacionalmente para verificar a acurácia do modelo em detrimento aos testes experimentais realizados. Nas simulações não foi considerada a dinâmica elétrica do sistema. As simulações serão realizadas através da ferramenta de prototipagem matemática Simulink/MatLab[®].

4 Resultados

Para a identificação da não linearidade do atrito, foram realizados testes experimentais no protótipo do robô Gantry. Para a velocidade em regime permanente de cada simulação ajustou-se uma reta a qual se faz necessário para melhorar o ajuste dos parâmetros estáticos de atrito, além de ser possível desconsiderar a inércia dada a nulidade da aceleração. A força de atrito pode ser obtida pela relação entre o passo do fuso e o torque do motor, que por sua vez foi obtido para cada simulação a partir da relação entre o rendimento, potência mecânica e velocidade em regime permanente.

Os resultados dos testes em regime permanente são representados na forma de pontos no gráfico da Figura 2.

Fonte: próprio autor.

O ajuste de uma curva ao mapa estático, conforme apresentado na Figura 2, relacionando a velocidade em regime permanente e a força de atrito. Levando em consideração a equação (2) do atrito (mapa estático de atrito) a qual captura as características do atrito estático, atrito de Coulomb, atrito de arraste e o atrito de Stribeck. Para o ajuste utilizou-se a função *nlinfit* do MatLab e o ajuste por simulações computacionais, de modo a realizar o melhor ajuste dos parâmetros, descritos na Tabela 1.

Parâmetro	Descrição	Valor	Unidade
F_c	Coeficiente de atrito de Coulomb	10300	Ν
F_s	Coeficiente de atrito estático	12300	Ν
\dot{y}_{s}	Velocidade de Stribeck	0,002	m/s
σ_{2p}	Coeficiente de amortecimento viscoso (B) positivo	3,2189 · 10 ³	Ns²/m²
σ_{2n}	Coeficiente de amortecimento viscoso (B) negativo	$1,5277 \cdot 10^4$	Ns^2/m^2
М	Massa deslocada	11,250	kg
J_m	Momento de inércia do eixo motor	$1.2298 \cdot 10^{-5}$	kgm²
M _{eq}	Massa equivalente	23,0530	kg

Tabela 1 - Parâmetros para o Cálculo das Características do Atrito

Fonte: próprio autor.

Considerando os parâmetros descritos na Tabela 1 Tabela 1 (para o coeficiente de amortecimento viscoso negativo (σ_{2n})) para se fazer a simulação utilizando o Simulink/MatLab, a partir da escrita do diagrama de blocos referente as equações (2) e (3), pode-se validar o modelo para um dos experimentos conforme a Figura 3

Figura 3 - Validação do Modelo Dinâmico Com a Inclusão das Características do Mapa Estático de Atrito Fonte: próprio autor.

É relevante notar que o erro obtido é próximo de zero ao longo de todo o experimento, o que indica a acurácia do modelo adotado com a inclusão do mapa estático de atrito.

5 Discussões

Apresentou-se neste trabalho a identificação a não linearidade de atrito e a inclusão desta na modelagem dinâmica do protótipo de uma junta de robô do tipo Gantry acionado por inversor de frequência e motorredutor de corrente alternada. Foi construído um protótipo e identificado experimentalmente às características do atrito (as quais estão apresentadas no mapa estático de atrito) e feita à inclusão destas características no modelo dinâmico do robô Gantry o qual é validado experimentalmente. O mapa estático de atrito indica a característica do atrito de Coulomb é mais relevante em detrimento ao atrito viscoso convencionado pela literatura. Na comparação apresentada na Figura 3, entre o teste experimental e a simulação computacional, percebe-se que o modelo descreve com acurácia a dinâmica da junta robótica o que pode contribuir no desenvolvimento de estratégias de controle mais precisas e por consequência, na

7

melhoria da qualidade dos processos além de contribuir para a robotização de baixo custo nas mais diversas aplicações, como a marcenaria e a usinagem.

Agradecimentos

Aos autores são agradecidos a CAPES pela bolsa de mestrado e à Unijuí pela estrutura laboratorial disponível no NIMASS do Câmpus Panambi, implantado com apoio financeiro do FINEP, SEBRAE, CNPq, FAPERGS e MCT.

Referências

[1] C. Canudas de Wit, H. Olsson, K. J. Åström and P. Lischinsky. A New Model for Control Systems with Friction, IEEE Transactions on Automatic Control, vol. 40, n. 3, 419-425, (1995), DOI: 10.1109/9.376053.

[2] L. R. Douat, I. Queinnec, G. Garcia and M. Michelin. Identification and Vibration Attenuation for the Parallel Robot Par2, IEEE Transactions on Control Systems Technology, vol. 22, n. 1, 190-200, (2014), DOI: 10.1109/TCST.2013.2249515.

[3] M. Hanifzadegan and R. Nagamune. Tracking and Structural Vibrion Control of Flexible Ball-Screw Drives with Dynamic Variations, IEEE/ASME Transactions on Mechatronics, vol. 20, 133-142, (2015), DOI: 10.1109/TMECH.2014.2298241.

[4] S. PAATZ. Anatomy of a Robot. Engineering & Technology, vol. 3, 42-44. (2008), DOI 10.1049/et:20080113.

[5] W. Po-Nagen. Real-time Inter-processing for PC Based Robot Controllers in Telerobotic and Gantry Robotic Controller System, International Conference on Robotics and Biomimetics, vol. 1, 1585-1589, (2009), DOI: 10.1109/ROBIO.2009.4913237.

[6] A. S. Sanca. Controle com Compensação de Atrito para Estruturas de Base Móveis de Robôs Manipuladores, Dissertação de Mestrado em Engenharia Elétrica, UFBA, (2006).

[7] L. Sciavicco, B. Siciliano. Modeling and Control of Robot Manipulators, McGraw-Hill, (1996).

[8] N. Shimada, T. Yoshioka, K. Ohishi, M. Toshimasa And Y. Yokokura. Reliable Forcesensorless Contact Detection Method for Ball Screw Drive Cartesian Robot, IEEE International Symposium on Industrial Electronics (ISIE), vol. 1, 1-6, (2013), DOI: 10.1109/ISIE.2013.6563694.

[9] A. C. Valdiero. Modelagem Matemática de Robôs Hidráulicos, Unijuí, (2012).