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Resumo. Natural frequencies of second order linear vibrating structures are frequently
computed through reduction to generalized first order eigenvalue problem. We show how
even complex second-order eigenvalues can be refined using Krylov-type strategies that apply
recursion, shifts and inversion, using the original system matrices. Benchmarks with test
matrices are presented.
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1 Introduction

Second-order mechanical linear systems can be described, in the state-space form, by

Mq̈ + Cq̇ +Kq = f, (1)

for symmetric matrices M,C,K ∈ R
n×n called, respectively mass, damping and stiffness

matrices. This is the case of vibrating structures such as bridges, buildings, transmission
towers and others. M is usually positive definite, while K is usually positive semi-definite.
If C cannot be obtained, it is usually assumed the proportional damping hypothesis:

C = αM + βK , α > 0, β > 0. (2)

Important properties regarding stability and control of system (1) are determined by
algebraic facts on the solutions pairs (λi, xi) of the second order eigenvalue problem

λ2Mx+ λCx+Kx = 0. (3)

which is usually transformed into a generalized first order eigenvalue problem

λBy = Ay (4)

by defining u = λx, v = x, y =

[

u

v

]

and arranging the equations in a few possible ways:
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C1: keeping the symmetry in both sides:

λ

[

−M 0
0 K

] [

u

v

]

=

[

C K

K 0

] [

u

v

]

(5)

C2: keeping left side positive for M and K positive:

λ

[

M C

0 K

] [

u

v

]

=

[

0 −K
K 0

] [

u

v

]

(6)

C3: keeping left side symmetric and positive for positive M and K:

λ

[

M 0
0 K

] [

u

v

]

=

[

−C −K
K 0

] [

u

v

]

(7)

C4: keeping left side positive for positive M (useful if K is singular):

λ

[

M C

0 M

] [

u

v

]

=

[

0 −K
M 0

] [

u

v

]

(8)

After the reduction to (4) is established, if B is positive definite, a very used approach to
further simplification uses the Cholesky Factorization LLT = B which implies

λLLTx = Ax⇔ λLTx = L−1AL−TLTx⇔ Āw = λw , LTx = w. (9)

This reduction to the first order eigenvalue problem, when B is symmetric positive definite,
is just one of the computational strategies available to solve (4). Other strategies for solving
(4) include the QZ iteration [6], which is a generalization of the QR iteration method [6]
for a pair of matrices (A,B), through reduction to a Hessenberg-triangular form [11].

Computational strategies to solve (3) without transformation to first order problem
are usually applied for large and sparse linear second-order systems, and include the well-
known Jacobi-Davidson method [8, 12] and the SOAR method [1].

Well-known results on the sensitivity of problem (4) are given by several authors [5,
7, 10] including the well-known Bauer-Fike theorem [6]. As for the original problem (3),
only a few but insightful results exist, among them we refer to [9], which relates relative
changes in second order eigenvalues and eigenvectors with relative changes in the matrices
M , C and K, in some matrix norm.

Since the matrices of problem (4) are obtained composing the matrices of problem
(3) into double-sized matrices, and since no result on relationship between estimates for
the two problems exist, one should expect to find situations in which (3) is far better
conditioned than (4), possibly depending on which equation was used for the reduction.

A previous work [3] gathered computational evidences of this conjecture by bench-
marking matrix datasets that showed that real eigenvalues obtained through reduction to
(4) could yield to much better solutions of (3), obtained by using Krylov-subpace type
techniques, real shifting, and by exploiting properties of the original system matrices.
We propose here to extend those strategies, and to show how complex valued shifts and
complex arithmetic strategies are able to refine any isolated solution of (3).

In section 2, we present our methodology and main definitions. In section 3, we present
numerical results with public-domain test data comming from real-life vibrating structures.
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2 Methods

2.1 Smallest singular value ratios

Let (λi, xi), i = 0, . . . , 2n − 1 be exact values of eigenpairs of (3) and let µ and µ∗ be
approximations that are close to λi. Since any matrix Wi = λ2iM + λiC +K is singular,
we will compare µ and µ∗ on the grounds of how much singular they turn this matrix to
be. Define the nullity ratio for a pair of approximations (µ, µ∗) by

NR(µ, µ
∗) =

− log10(min(svd((µ∗)2M + µ∗C +K)))

− log10(min(svd(µ2M + µC +K)))
(10)

where min(svd(U))) stands for the smallest singular value of a matrix U . If NR(µ, µ
∗) is

greater than one, than (µ∗) approximates some λi, i = 1, ..., 2n − 1, better than µ.

Methodologically, µ is obtained through reduction to (4), while µ∗ is obtained through
a refinement technique that uses µ and the equation (3).

2.2 The QZ method

One of the most used computational strategies for solving (4) is the QZ method. The
pair of matrices (A,B) is reduced to a quasitriangular-triangular pair (H,T ) through
orthogonal matrices U and V :

UTAV = H , UTBV = T (11)

An iterative process, starting from matrices H0 = H and T0 = T and using QR de-
compositions, constructs a sequence of matrices (Hk, Tk) that usually converges3 to the
generalized Real Schur decomposition of (A,B) from where real and complex eigenvalues
can be obtained. More details can be found in [6].

2.3 Second-order Arnoldi method

This strategy [2] applies Fundamental solutions [4] to derive a recurrence

{

MYk+2 + CYk+1 +KYk = 0, k = 0, 1, 2, 3, . . .
Y0 = U0,MY1 = V0.

(12)

of matrices {Yk} ∈ R
n×p spanning Krylov-type like spaces from which approximations

to dominant and isolated sets of eigenvectors can be computed. This strategy is closely
related to the one in [1]. It is shown in [2] that, in order to construct a sequence {αk}
converging to a real single isolated eigenvalue λi that is the closest to a given real number

3numerical analysis’ strategies, like shifting, are applied to speed-up this convergence
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σ, one can shift and invert (12) in order to derive the recurrence formulas 4

Kσyk+2 + Cσyk+1 +Myk = 0 (13)

ηk = |yk+1|2 , yk+2 ←
yk+2

ηk
, yk+1 ←

yk+1

ηk
, yk ←

yk

ηk
(14)

αk =
1

yTk+1
yk+2

+ σ (15)

for any starting vectors y0, y1 ∈ R
n, and for parametric matrices

Cσ = C + 2σM , Kσ = K + σC + σ2M. (16)

We observe that he recurrence above can indeed be carried out for complex σ, if

αk =
1

yk+1
T yk+2

+ σ (17)

replaces (15) in computational environments that work with complex valued numbers. We
remark that z stands for the complex conjugate of z.

If one wants to derive real valued formulas to accomplish the this recurrence in com-
putational environments that do not work with complex valued numbers, we suggest to
following approach: write σ = φ + ıψ for real φ and ψ and observe that complex valued
matrices Cσ and Kσ in (16) can be written

Cσ = Dσ + ıEσ , Kσ = Fσ + ıGσ (18)

for real valued matrices Dσ, Eσ, Fσ and Gσ satisfying

Dσ = C + 2φM , Eσ = 2ψM (19)

Fσ = (φ2 − ψ2)M + φC +K , Gσ = 2φψM + ψC. (20)

If we also write yk+1
T yk+2 = pk + ıqk then (13)-(15) are equivalent to

[

Fσ −Gσ

Gσ Fσ

] [

uk+2

vk+2

]

= −

[

Dσ −Eσ

Eσ Dσ

] [

uk+1

vk+1

]

−M

[

uk
vk

]

(21)

ηk =
√

|uk+1|
2
2
+ |vk+1|

2
2
, uk+2 ←

uk+2

ηk
, vk+2 ←

vk+2

ηk
(22)

uk+1 ←
uk+1

ηk
, vk+1 ←

vk+1

ηk
, uk ←

uk

ηk
, vk ←

vk

ηk
(23)

pk ← uTk+1uk+2 + vTk+1vk+2 , qk ← uTk+1vk+2 − v
T
k+1uk+2 (24)

αk =
pk

p2
k
+ q2

k

, βk =
−qk

p2
k
+ q2

k

(25)

and {αk + ıβk} converges to the eigenvalue λi which the closest to given σ = φ+ ıψ.
Unfortunately in (21) symmetry and positivity properties of the working matrices

are lost. Therefore, depending on computational aspects like size and sparsity of the
system matrices, working with equations (13),(14) and (17), that is, with complex valued
matrices, can still be preferred because it can exploit symmetry, positiveness, sparsity and
other properties the original system matrices might have.

4it is necessary to fix a small mistake in equation for αk, adding the missing back-shift term σ
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3 Results

3.1 Transmission tower with proportional damping

The data comes from the set BCSSTRUC1 of the Harwell-Boeing collection available in
the MatrixMarket website [13]. It regards a 153 d.o.f. transmission tower assumed to have
proportional damping with α = 0.01, β = 0.0003. These parameters were chosen so that
the model has eigenvalue pairs sufficiently apart from each other, and then refinement
technique proposed in last section could be applied successfully. This model has 153
complex conjugate eigenvalue pairs. Only eigenvalues with positive imaginary parts were
refined. The experiments were done in an Intel Dual Core Pentium G630 2.7GHz Desktop
under Ubuntu Linux and software Matlab 2012b, which is able to carry out double complex
arithmetic operations with almost no adjust at all to the real data algorithms from [2].

Figures 1 and 2 show that the eigenvalues could be successfully improved through
iterative refinement, yielding to nullity ratios varying from 1.1 to 2.8, regardless of the
reduction formula that was used.
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Figura 1: Nullity ratios for transmission tower, using formulas in (5) and (6).
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Figura 2: Nullity ratios for transmission tower, using formulas in (7) and (8).
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3.2 Part of suspension bridge with proportional damping

The data comes from the set BCSSTRUC3 of the Harwell-Boeing collection [13]. It
regards a 817 d.o.f. part of a suspension bridge assumed to have proportional damping with
the choices α = 0.1, β = 2.5 · 10−5 so that all the 17 smallest magnitude eigenvalue pairs
of the system are sufficiently isolated. The experiments were done in an Intel Dual Core
Pentium G630 2.7GHz Desktop under Ubuntu Linux and Intel FORTRAN 90 compiler
with double complex type data structures, with the aid of BLAS routines zaxpy, zspmv,
dznrm2 and zscal, and LAPACK routines zsptrf and zsptrs.

Table 1 shows some outcomes in detail. It shows that the chosen subdominant set
of frequencies was successfully refined with nullity ratios varying from 2 to 6.5. The
singular-value computations for the nullity ratios were done in Matlab 2012b, however.

Tabela 1: Small subset of benchmark outcome for part of suspension bridge, using (6).
µ µ∗ NR

−0.051084766291962+ 9.317209566176491i −0.051085162062924+ 9.317207486083117i 6.5
−0.050031035971404+ 1.582320118444923i −0.050031327987364+ 1.582319772644305i 5.8
−0.050026089882555+ 1.442364218095966i −0.050026036465881+ 1.442364263353126i 2.2
−0.050144725178335+ 3.400309779358339i −0.050144557825537+ 3.400310511918943i 3.6
−0.050114336761382+ 3.027179214317865i −0.050114579072032+ 3.027179263425846i 3.0
−0.050208054884942+ 4.082572936190894i −0.050208373965475+ 4.082572271850640i 2.7
−0.050217871526307+ 4.173761937451974i −0.050217785112027+ 4.173761748830215i 2.8
−0.050259834443233+ 4.564440771379331i −0.050260458057345+ 4.564440653355708i 3.3
−0.050301883707487+ 4.917847147751918i −0.050302346854857+ 4.917846893261517i 3.2
−0.050403489581206+ 5.685709562415424i −0.050404122889866+ 5.685709332472713i 3.0
−0.050433043547391+ 5.886671744926964i −0.050433193101629+ 5.886671778144693i 2.9
−0.050505086337247+ 6.357520894181837i −0.050505257787513+ 6.357520917769455i 2.9
−0.050893272757203+ 8.455165630217271i −0.050893655173541+ 8.455165505136536i 4.7
−0.050626496684400+ 7.078031137471627i −0.050626263496229+ 7.078030564842803i 4.6
−0.050778545465319+ 7.891432941597847i −0.050778465926318+ 7.891431787273492i 4.3
−0.050807677914873+ 8.039202592368438i −0.050807891968324+ 8.039202449512876i 3.7

4 Conclusion

Krylov-subspace type iterations using shifts and inversion, already shown to be able
to refine real isolated eigenvalues of second order linear systems, were adapted to refine
also complex conjugate isolated pairs. The proposed technique uses the original system
matrices directly, exploiting properties like their symmetry and positiveness, and taking
advantage that, in its original form, the eigenvalue problem seams to be far better conditi-
oned than the generalized first order eigenvalue problem to which it is usually reduced to.
Benchmarks using test data in computational environments capable to carry out complex
valued arithmetic computations are made. Computational evidence has shown that a class
of strategies that are usually applied in the context of large and sparse linear structures
can also be of great benefit for improving the solution of the eigenvalue problem for small
and medium sized dense structures, through iterative refinement.
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