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Abstract. This paper presents a topology optimization methodology of piezoelectric actuators in 

laminated composite structures. The Linear Quadratic Regulator (LQR) optimal control technique is 

used. The topology optimization is formulated to find the optimum localization of the Macro Fiber 

Composite (MFC), through of the maximization of the controllability index. Actuator location 

optimization results show that the technique implemented improves the structural vibration 

damping. 
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1 Introduction 
 

The increasing demand for light structures in important applications highlights the 

necessity for using advanced methods in their design, as the structural optimization and 

optimal control. With sensors and actuators integrated by a control system, these structures 

have the capacity of sense environment changes, diagnose localized problems, store and 

process measurement data; then they take appropriate action to improve the efficiency of the 

system, or to preserve their structural integrity and safety [3]. An important application, 

according to [5], are systems that can sense induced motions and, thus, apply control force to 

reduce the structural vibrations. The main application of these smart structures is in the 

aerospace industry, where they can be seen in flexible robot manipulators [18]. 

The development of methods to design smart structures is a promising research field, 

fueled by the existing demand for these structures and the great range of possible 

applications. In the realm of the structural design, the topology optimization method 

contributed efficiently in the design of lighter structures, decreasing costs and the material 

utilized, evidencing the sustainability aspects [7,2]. 

Optimized structures usually present reduced mass and low internal damping. These 

features facilitate the occurrence of structural vibrations, which may cause undesirable 

operational effects, for instance in mechanism positioning accuracy. According to [13], the 

use of an active control system integrated by sensors and actuators is crucial in smart 
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structures. This article presents the application of a specific type of actuator, the MFC 

(Macro Fiber Composite) piezoelectric transducer [15]. 

This work uses a simplified model to represent the interaction between the MFC and the 

structure. Most works models the electromechanical effect, where it is necessary to consider 

in this model the electric field generated between the electrodes, the piezoelectric 

constitutive model coupling mechanical and electrical fields, resulting thus in a complex 

multi-physic model [11,4].  

Based on the aforementioned ideas, this work presents a topology optimization of 

piezoelectric actuators on laminated composite structures, aiming to reduce the structural 

vibrations induced by external forces. The Linear Quadratic Regulator (LQR) control is used 

for the structural control. The dynamic system is represented in state space using modal 

coordinates [12,13,6]. In the active control of structural vibrations using piezoelectric 

material, the localization of sensors and actuators has influence in performance of the control 

system [9]. Therefore, the work presents a topology optimization that allows the optimal 

MFC placement by the maximization of controllability index. 

 

2 Structural Modeling 
 

The approximated solution of the solid mechanics equilibrium equations uses finite 

element method (FEM) formulation. It uses the assumptions of the infinitesimal linear 

elasticity and a lamination theory for composite materials. Mass and stiffness matrices are 

derived for an eight-node serendipity quadrilateral shell element. The element is based on the 

Ahmad degenerated solid formulation [1], and it has five degrees-of-freedom (three 

displacements and two slopes) per node. A good review of the element can be found in [17]. 

The laminated composite formulation uses an explicit integration through the thickness. 

 

2.1 First-order shear deformation laminated theory 

 
The First Order Deformation Laminated Theory (FSDT) is based on the Reissner-

Mindlin plate theory. It allows the inclusion of transverse shear strains assuming a linear 

variation through the thickness [14]. In this theory, the constitutive equation of laminated 

plate is described as: 
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where N and M are the distributed normal tractions and moments applied to the plate, 

respectively. The   are the midplane (membrane) strains terms, and   are the curvatures 

terms. 

The matrices    are standard in finite element shell modeling, and are defined 

generically by  
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where   is the distance from laminate midplane to the bottom of the each k-th layer, Qk is the 

transformed stiffness matrix and n is the number of layers. 

C1 is the extensional stiffness matrix; the stiffness matrix C2 is the coupling between 
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bending and membrane, which contains the contribution of the curvature   in the traction, 

when the plate is symmetric it is zero. The matrix C3 is the bending stiffness matrix. Whereas 

the derivation of the transformation matrices and their many curvilinear coordinate systems 

is quite involved, it is possible find a good review about the formulation presented in this 

section, in composite material shell books [14]. 

 

2.2 Stiffness and mass matrices 

 
The stiffness matrix utilized in this work follows a formulation proposed by [10], using 

an explicit integration on the thickness direction. The elemental transverse integration is 

accomplished using the third model presented in that paper, in which the inverse 

isoparametric mapping Jacobian matrix is assumed constant, and its computations are carried 

only on the reference surface.  

Thus the stiffness matrix can be described as 

 

        
 

  

       (3) 

 

where Ke is elementary stiffness matrix, and the strain matrix F is divided in two parts, both 

are independent of the thickness and can be rewritten as 

 

           (4) 

 

Using (4) the elementary stiffness matrix can be written as 

 

        
        

        
        

      
 

  

 

  

            
(5) 

 

where the coordinates  and the Jacobian matrix J arise from the standard isoparametric 

coordinate mapping [17]. 

This work uses the lumped mass matrix [17]. Global stiffness and mass matrices are then 

assembled by a conventional FEM superposition procedure. 

 

2.3 Distributed force vector due to the MFC 

 
This work uses a simplified model to represent the interaction between the MFC actuator 

and the structure. This model has the advantage a simpler implementation, avoiding 

modeling electric fields and the electromechanical effect. Assuming that the MFC is 

modeled as one of the orthotropic material layers of the laminate shell, it is considered that 

an additional elemental force vector of distributed loads is obtained from an initial strain in 

the MFC. This strain is proportional to the applied electrical potential. Therefore, is not 

necessary to explicitly model the electric field and the electromechanical coupling because 

these effects are considered analytically.  
The force vector of distributed loads on the shell surface can be obtained by the following 

equation 

            
(6) 

where      is the MFC strain vector and   is the electric potential. 

The strain vector is represented by  
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            (7) 

where    
    is obtained considering the lamina membrane stress state for orthotropic 

material. The MFC free strain in direction x is obtained from the manufacturer data sheet. 

After that, multiplying of the initial strain (7) by laminate stiffness matrix C yields the 

mechanical stress generated for this strain. Multiplying by interpolation functions matrix N 

and integrating on the element, it is possible to find the nodal forces values for this element, 

      
 
 

 

  

       (8) 

 

so the distributed force vector in the surface each element can be written as  

 

        
 
       

 
     

  

  

  

  

             
(9) 

 

Depending on the position of the MFC layer in the stack, and the curvature, the 

elemental force vector can contain only membrane contributions, or more likely also bending 

moments and shear forces. 

 

3   Results 
 

3.1 Topology optimization 

 
In order to find the optimal placement of the MFC actuator to control the structural 

vibrations of a 80x420x1mm glass-epoxy plate controlled with Smart Material MFC model 

8528-P1, a strategy based in the maximization of the controllability index is applied. The 

objective function is the trace of the controllability Gramian and topology optimization 

formulation can be described as: 

 

    
  

            

            

                          

   
      
 

 

   
 

 

   
    

  

 

(10) 

where    is the control design variable,   
    is the maximum value of the volume 

constraint, N is the vector dimension of the design variable. The controllability Gramian 

matrix WC of the system is defined by the following Lyapunov equation [13]: 

 

       
          (11) 

 

where A and B are the matrices defined in [6]. In this work the trace of the Gramian is used 

as a measure of controllability of the system [19]. In the solution of the topology 

optimization problem the Sequential Linear Programming SLP was used.  

 The Figure 1 presents the optimal MFC placement, where it maximizes the 

controllability index.  
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Figure1: Optimal placement for the first bending mode. 

 

In the Figure 1 the optimal placement is localized in the clamped tip. The optimal 

topology is associated with the region of greater bending moment in the structure for the first 

vibration mode, and consequently, the region where the greatest controllability index is 

obtained.  

The Figure 2 shows the MFC optimal placement on the active layer for controlling first 

two vibration modes. 

 

 
Figure 2: Optimal placement for two bending modes. 

 

In the Figure 2 it is possible observe that the MFC optimal placement is localized in the 

middle of the structure. It happens due the influence of the second vibration mode. The 

optimal topology is associated with the region of greater bending moment in the structure for 

the second vibration mode, and consequently, the region where the greatest controllability 

index is obtained. 

 

3.2 Behavior of the Controlled Structure 

 
The control is designed to reduce structural vibrations, decreasing the system overshoot 

and settling time to an initial displacement of 10 mm with null initial velocity in the plate 

free tip. A truncated modal structural model with the five first vibration modes is considered. 

A structural damping of 0.018 was obtained experimentally by the authors by applying the 

logarithm decrement [12]. 

To determine the values of the weighting matrices (Q and R), it was established as choice 

criterion, the voltage limit supported by MFC, between -500 and 1500 volts, avoiding thus 

the depolarization of the material.  The value is 10
8
 times the 2x2 identity matrix. 

The transverse displacement in free tip was evaluated considering the system in closed 

loop and open. Figure 3 shows the results of the transverse displacement and the applied 

control signal to the first bending mode. The LQR control system in closed loop contributes 

to decrease the free tip displacement. The overshoot and the settling time are reduced 

significantly. The maximum value to electric stress applied was 650 volts and the minimum 

value was -487 volts keeping within the actuator operational limits. 
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Figure 3: Transverse displacement of free tip (m) and control signal (V) to the model to 

the first bending mode. 

 

4 Conclusions 
 

The topology optimization procedure proposed in this article increases the MFC 

actuation power to control the structural vibrations. The optimization formulated for the 

maximization of the controllability index. In the control analysis is possible see that the LQR 

control system in closed loop contributes to decrease the displacement in free tip. The 

overshoot and the settling time are reduced significantly. Besides, by a sensible choice of the 

gain values, the maximum and minimum value to electric potential applied was within of 

MFC operating limits. 
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