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Abstract. An investigation emphasizing on free vibrations of steel catenary risers to determine 

the natural frequencies is numerically approached in this work. A model formulation is 

developed using the variational approach. Nonlinear equations of motion coupled in axial and 

transverse displacements are derived through the principle of the stationary potential energy.  
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1 Introduction 
 

Fluid traveling through a steel catenary riser (SCR) is subjected to centrifugal and 

Coriolis accelerations due to the curvature and angular movement of the riser, 

respectively. The dynamics of the internal fluid flow affects the natural vibration 

parameters of an SCR, reducing even more its useful life in relation to the useful life 

without considering the internal fluid. 

 

Few investigations have been conducted to study the effect of internal fluid dynamics 

on the global dynamic behavior of the SCRs. The problem of SCRs naturally 

vibrating on the effects of internal fluid dynamics is still an open research field. The 

present work approaches numerically the free vibration problem of SCRs.  

 

2 Mathematical Formulation 
 

The SCR is fully immersed in sea water of density ρw and has an initial arc length 

equal to 𝑆. The external and internal diameters are 𝐷𝑒 and 𝐷𝑖, respectively, and the 

density of the riser material is 𝜌𝑟. The SCR is connected to the platform and connected 

to the well head through hinged supports in both ends, see Figure 1. This transports an 

incompressible fluid of density 𝜌𝑓 with constant velocity 𝑈.  

 

We consider three configurations in the mathematic modeling of the riser. The 

configuration 1-1 represents the riser without any load applied. The configuration 2-2 is 

the static equilibrium configuration of the riser when subjected to time-independent 

loads, and the configuration 3-3 when subjected to the action of time-dependent loads. 
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Figure 1: Risers configurations. 

 

The equations of motion of the riser are deduced using the principle of stationary 

potential energy that is expressed by 

 

𝛿𝜋 = 𝛿𝑈𝑎 + 𝛿𝑈𝑏 − (𝛿𝑊𝑤 + 𝛿𝑊𝐻 + 𝛿𝑊𝐼) = 0  (1) 

 

where 𝛿𝑈𝑎 and 𝛿𝑈𝑏 are the virtual strain energies due to axial stretching and bending 

moment, respectively; 𝛿𝑊𝑤, 𝛿𝑊𝐻 and 𝛿𝑊𝐼 are the virtual work done by the effective 

weight, hydrodynamic forces, and inertial forces, respectively. 

 

2.1 Virtual strain energy due to axial stretching 

 

The strain energy stored at the riser due to the axial deformation is due to the axial 

tension on the linear elastic riser and due to the axial stress resulting from enclosing external 

and internal hydrostatic pressures [6]. The axial tension is defined by T  and the axial stress 

due to the enclosing hydrostatic pressures is defined by 2 ( ) /e e i i rp A p A A    where 𝑝𝑒 and 

𝑝𝑖 are the external and internal pressures, respectively, 𝐴𝑟 is the cross-sectional area of the 

riser, 𝐴𝑒 and 𝐴𝑖 are the external and internal cross-sectional areas of the riser, respectively, 

and 𝜈 is the Poisson’s ratio. Thus, the strain energy due to axial deformation is given by  
 

2
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where E is the modulus of elasticity. The axial strain ε is defined as  
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where 2 2 1/2

0 0 0( )s x y     and the operator ( )’ express the derivative of ( ) with respect to 0y . 

By introducing the Eq. (3) into the Eq. (2) and applying the variational operator we obtain 
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where 𝑇𝑎𝑜 = 𝐸𝐴𝑟𝜀𝑜 + 𝜎𝐴𝑟, is the apparent axial force at the static equilibrium configuration. 

 

2.2. Virtual strain energy due to bending 
 

Considering that the initial configuration of the riser is a straight line, defined by linking 

both ends of riser, the virtual strain energy due to the bending moment 𝑀 is by definition  
 

0

'

H

b oU M dy    (5) 

where κ(1 )M EI   , M is detailed in [2], I  is the moment of inertia and 𝜅 is the curvature of 

the riser at the displaced configuration. This last term is defined by: 
 

  3'' ' ' '' 'x y x y s    (6) 

 

where 𝑠 is the length of a riser element at the displaced configuration. The variable 𝛿𝜃′ of 

Eq. (5) is obtained by applying the variational operator to 𝜃′ = 𝜅𝑠′, the definition of 

curvature. Finally, by substituting the equation (6) in the Eq. (5), and using the following 

relations, valid at the displaced configurations, 𝛿𝑥 = 𝛿𝑢   , 𝛿𝑦 = 𝛿𝑣, we obtain
bU . 

 

2.3. Virtual work done by the apparent weight 
 

The apparent weight by unit of length, 𝑤𝑒, is defined as 𝑤𝑒 = (𝜌𝑟𝐴𝑟 + 𝜌𝑓𝐴𝑖 − 𝜌𝑤𝐴𝑒)𝑔. 

Then the virtual work done by the apparent weight is expressed by 

 

𝛿𝑊𝑊 = −∫ 𝑤𝑒𝛿𝑣
𝑆

0

𝑑𝑆 = −∫ 𝑤𝑒 (
𝑠𝑜′

1 + 𝜀𝑜

) 𝛿𝑣
𝐻

0

𝑑𝑦𝑜 (7) 

 

2.4. Virtual work done by the hydrodynamic forces 
 

Figure 2 shows a riser element moving submerse in an oceanic current that follows the 

positive direction of the x axis. 𝑉𝑛 and 𝑉𝑡 are the components of velocity of the fluid incident 

on the riser at the normal and tangential directions, respectively. The hydrodynamic force by 

unit of length acting on a riser can be determined using the Morison equation expressed by: 
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where 𝐶𝐷  and 𝐶𝐴 are the drag and added mass coefficients, respectively. The first term on the 

right hand of the Eq. (8) is the drag force, the second term is the added mass force and the 

last term is the Froude-Krylov force. Then, the virtual work done by the hydrodynamic 

forces is expressed by 
 

𝛿𝑊𝐻 = ∫ 𝑓𝑚𝑦𝑜′𝛿𝑢
𝐻

0
𝑑𝑦𝑜 − ∫ 𝑓𝑚𝑥𝑜′𝛿𝑣

𝐻

0
𝑑𝑦𝑜    (9) 
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Figure 2. Normal hydrodynamic force acting on inclined riser and the displacement 

components of a point of riser. 
 

2.5. Virtual work done by the inertial forces 
 

The riser is subject to inertial forces; due to the rigid body dynamic and due to the 

dynamics of the internal fluid. The virtual work done by the inertial forces is expressed as  
 

𝛿𝑊𝐼 = ∫ [(𝑚𝑟𝑎𝑟⃗⃗⃗⃗ + 𝑚𝑓𝑎𝑓⃗⃗⃗⃗ ) (𝛿𝑢𝑖 + 𝛿𝑣𝑗 )]
𝐻

0
𝑠𝑜′𝑑𝑦𝑜    (10) 

 

where 𝑎 𝑟 is the acceleration of the riser, 𝑎 𝑓 is the acceleration of the internal fluid, 𝑚𝑟 and 

𝑚𝑓  are the riser mass and the internal fluid mass per unit length, respectively. The 

acceleration of the riser in Cartesian coordinates is given by  
 

𝑎𝑟⃗⃗⃗⃗ = �̈� 𝑖 + �̈� 𝑗                          (11) 

 

and the internal fluid acceleration is expressed by the following expression, detailed in [4], 
 

𝑎𝑓⃗⃗⃗⃗ = [�̈� + (
1

𝑠𝑜′
2
−

𝑥𝑜′
2

𝑠𝑜′
4
) (𝑥𝑜′′ + 𝑢′′)U2 − (

𝑥𝑜′𝑦𝑜′

𝑠𝑜′
4

) (𝑦𝑜′′ + 𝑣′′)U2 +
2U

𝑠𝑜′
�̇�′]  𝑖 + 

(12) 

           [�̈� + (
1

𝑠𝑜′
2
−

𝑦𝑜′
2

𝑠𝑜′
4
) (𝑦𝑜′′ + 𝑣′′)U2 − (

𝑥𝑜′𝑦𝑜′

𝑠𝑜′
4

) (𝑥𝑜′′ + 𝑢′′)U2 +
2U

𝑠𝑜′
�̇�′]  𝑗  

 

By substituting equations (4), (5), (7), (9) and (10) in Eq. (1) and integrating by parts the 

resulting equation, we obtain two equations of motion: one in the x-direction and another in 

the y-direction. Then, those two equations can be expressed in matrix form as:  

 
[𝐴]{�̈�} + [𝐵]{�̇�′} + [𝐶]{𝑥′′} + ([𝑘𝑡1]{𝑥′})

′ + ([𝑘𝑡2]{𝑥′})
′ + ([𝑘𝑏1]{𝑥′})

′′ + ([𝑘𝑏2]{𝑥′′})
′ = {𝐹} (13) 

 

In this work an analysis of free vibration of a riser was conducted considering the 

following external forces: weight of the riser, buoyancy, forces due to internal fluid, and 

Morison’s force. The last force is modelled by the second term on the right hand side of Eq. 

(8), and then the force vector {𝐹} becomes: 

 

{𝐹} = −𝐶𝐴𝜌𝑚𝐴𝑒 (
1

𝑠′
𝑜

) [
1 −𝑥′𝑜

−𝑥′𝑜 𝑥′
𝑜
2 ] {

�̈�
�̈�
} (14) 

 

Substituting the Eq. (14) in Eq. (13), we obtain the equation of motion for free vibration 

 
[𝐴]{�̈�} + [𝐵]{�̇�}′ + [𝐶]{𝑥}′′ + ([𝑘𝑡1]{𝒙}′)′ + ([𝑘𝑡2]{𝒙}′)′ + ([𝑘𝑏1]{𝒙}′)′′ + ([𝑘𝑏2]{𝒙}′′)′ = {0} (15) 

In our work, we consider that the static equilibrium configuration of the riser is known.  
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3 Numerical Method 
 

This section presents the procedure used to determine the riser’s linear natural 

frequencies with internal fluid. From Figure 1: 

 

{𝒙} = {
𝑥
𝑦} = {𝒙𝒐} + {𝒖} = {

𝑥𝑜

𝑦𝑜
} + {

𝑢
𝑣
}  (16) 

 

Substituting Eq. (16) in Eq. (15), we obtain the following equation of motion 

 
[�̅�]{�̈�} + [𝐵]{�̇�}′ + [𝐶]{𝒖}′′ + ([𝑘𝑡1]{𝒖}′)′ + ([𝑘𝑡2]{𝒖}′)′ + ([𝑘𝑏1]{𝒖}′)′′ + ([𝑘𝑏2]{𝒖}′′)′ = {0} (17) 

 

The dynamic displacement of the riser in its bottom and top ends is constrained using a 

hinged support. In dynamic analysis the displacement field {𝒖} is interpolated as  

 
{𝒖} = [𝑁]{𝑑} (18) 

[𝑁] = [
𝑁1 𝑁2 𝑁3

0 0 0
    

0 0 0
𝑁1 𝑁2 𝑁3

    
𝑁4 𝑁5 𝑁6

0 0 0
    

0 0 0
𝑁4 𝑁5 𝑁6

] (19) 

{𝑑} = {𝑢1 𝑢1′ 𝑢1′′    𝑣1 𝑣1′ 𝑣1′′ 𝑢2 𝑢2′ 𝑢2′′ 𝑣2 𝑣2′ 𝑣2′′}
𝑇 (20) 

 

where {𝑑} is the vector of nodal displacements of riser’s element from the equilibrium 

position, [𝑁] is the matrix of interpolation functions, where 𝑁1, 𝑁2,  𝑁3, 𝑁4, 𝑁5 and 𝑁6 are 

the interpolation functions of fifth degree.  

 

Using the Galerkin finite element method [3] on the Eq. (17), the equation of motion of a 

riser’s element is obtained, and then, by assembling the matrices of all the finite elements, 

we get the global equation of motion 

 

[𝑀]{�̈�} + [𝐺]{�̇�} + [𝐾]{𝐷} = {0}       (21) 

 

where {𝐷}, {�̇�} and {�̈�} are the vectors of nodal displacements, nodal velocities and nodal 

accelerations of the riser, respectively, and the matrices [𝑀], [𝐺] and [𝐾] express the Mass, 

Gyroscopic and Stiffness matrix, respectively. 

 

3.1 Linear Free Vibration 
 

For the study of linear free vibration, the non-linear terms of the stiffness matrix [𝐾] are 

neglected. The non-linear terms are those that containing the variables 𝑢 and 𝑣 in their 

formulation. Then, the Eq. (21) takes the following form: 

 

[𝑀]{�̈�} + [𝐺]{�̇�} + [𝐾𝐿]{𝐷} = {0}       (22) 

 

where [𝐾𝐿] represents the linear stiffness matrix. Equation (22) has harmonic solution for 

complex eigenvalues 𝜆𝑖 = 𝛼𝑖 ± 𝑖𝜔𝑖 in the form {𝐷} = {�̅�}𝑒𝜆𝑡. Then the quadratic 

eigenvalue problem is obtained 

 

(𝜆2[𝑀] + 𝜆[𝐺] + [𝐾𝐿]){�̅�} = {0}       (23) 
 

Solving the Eq. (23), the linear frequencies and modal forms of SCR are obtained. 
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4 Results 
 

The riser properties and other parameters used in the simulations are De=0.26 m, 

Di=0.20 m, H=300 m, ρr=7850 kg/m3, ρw=1025 kg/m3, ρf=998 kg/m3, E=2.07x10
11 

N/m2, ν=0.3, Normal drag coefficient (CDn) and add mass coefficient (CA) are 0.7 and 1, 

respectively. The Axial force applied at the top is TH=476.20 kN. 

 

Table 1 shows the linear fundamental frequencies of the vertical riser obtained for 

different internal flow speed with current velocity equal to 0 m/s. The results obtained in 

this study are compared with the results obtained in [1] and [5]. The results are in good 

agreement. 

 

Table 1: Fundamental frequencies of the vertical riser, ω (rad/s). 
 

U (m/s) 
Moe, et al., (1988) Chucheepsakul, et al., (1999) This study 

Analytical solution 20-finite elements 20-finite elements 

0 0.2878 0.2891 0.2982 

5 - 0.2881 0.2974 

10 0.2838 0.2853 0.2950 

15 - 0.2804 0.2906 

20 0.2706 0.2731 0.2842 

25 - 0.2627 0.2753 
 

In addition, it was studied the effect of the gyroscopic matrix on the values of linear 

natural frequencies. The quadratic eigenvalue problem expressed by Eq. (23) has been 

solved with and without the gyroscopic matrix. Table 2 present the results obtained. 

 

Table 2: Effect of the gyroscopic matrix on the fundamental frequencies, ω (rad/s). 
 

U (m/s) 
With gyroscopic matrix Without gyroscopic matrix 

% error 
[G]≠[0] [G]=[0] 

0 0.2982 0.2982 0.00 

5 0.2974 0.2975 0.03 

10 0.2949 0.2953 0.14 

15 0.2906 0.2915 0.32 

20 0.2842 0.2860 0.62 

25 0.2753 0.2783 1.10 
 

Following, a SCR has been simulated in order to study the effects of the bending 

stiffness on the linear natural frequencies. The characteristics of the simulated riser are 

the same used in the previous simulations with the unique addition of that the horizontal 

displacement of platform is 70 m. Table 3 shows the effects of the elasticity modulus 𝐸 

and internal flow velocity on the linear fundamental frequencies of SCR. 

 

Table 3: Fundamental frequencies of a catenary riser, ω (rad/s). 
 

E (kN/m
2
) 

U (m/s) 

0 10 20 

2.07 x 10
9
 0.317 0.315 0.307 
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2.07 x 10
8
 0.304 0.293 0.270 

2.07 x 10
7
 0.287 0.284 0.274 

2.07 x 10
6
 0.273 0.268 0.248 

8.28 x 10
5
 0.269 0.264 0.243 

4.14 x 10
5
 0.265 0.259 0.238 

 

5 Conclusions 
 

The present work deals with the problem of free vibration of catenary risers with 

internal flow. Results are in good agreement with results obtained by another works. 
 

1. In the analysis of free linear vibration of catenary risers, with a fixed value for the 

axial force at the top and without current, it is concluded that the natural frequencies 

decreases with increasing the velocity of the internal fluid. Simulations were also 

conducted to study the effects of the modulus of elasticity over the natural 

frequencies of catenary risers, concluding that for a constant velocity of the internal 

fluid, the natural frequency increases with the modulus of elasticity E. 

2. Simulations were conducted in linear vibrations without considering the effect of the 

gyroscopic matrix. By comparing the natural frequencies obtained with and without 

the gyroscopic matrix, we can conclude that for low values of internal fluid velocity, 

the effects of the gyroscopic matrix are negligible. 
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