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Abstract. Flexible hoses are used in several engineering operations, specially in the offshore
industry, they are used to transfer liquid products between FPSO’s and also are present in
some riser configurations. These hoses undergoes large deformations with small strains,
to model this behavior the corotational formulation is implemented along the Newmark
integration operator with Newton-Raphson iterations to obtain the nonlinear dynamic
equilibrium response. The analysis is divided in two stages; static analysis, to obtain the
static configuration when dead loads are applied; and dynamic analysis to obtain the re-
sponse of the system to time-dependent loads. This two stages are coupled and the dynamic
response of a hose under time-varying displacement is simulated.
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1 Introduction

Flexible hose are use widely used in the industry, specially in the oil and gas indus-
tries. As is well known, in this industries security and fitness for service is of ultimate
importance. Flexible hoses are used in different parts of the offshore operations, they
are used to transfer products between vessels and also are used in some deep-water riser
configurations, like in the hybrid tower configuration. Dynamic analysis of this compo-
nents is of main importance in virtue of the calculation of the fatigue resistance. Flexible
hoses presents large deflections keeping small strains, this geometrical nonlinearity can
be modeled using different methods like Total Lagrangian or Updated Lagrangian, both
needing the use of stress and strain tensors, another option, the Corotational Formula-
tion, uses the classical beam theory in a local sense and transforms to a global reference.
Corotational formalution has been successfully applied in [5], [11] and [9]. The dead and
live loads acting on the hose are applied in two different analysis, static configuration is
obtained by solving the equilibrium equation using Newton-Raphson method, this static
configurations serves as base to the dynamic response analysis, the pre-stress effects of the
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prior static analysis is considered in the global analysis by transferring the internal force
vector and the deformation vector.

2 Mathematical Modeling

The Finite Element Method is used in this work to solve the boundary value problem
associated to the risers elastic problem. It is assumed the riser undergoes large transverse
displacements and rotations with strains remaining small, based on this assumptions the
corotational formulation is implemented to solve the geometrically nonlinear problem. The
corotational formulation is based on the Total Lagrangian formulation, used extensively
in several commercial finite element softwares.

2.1 Corotational Formulation

In the 60’s and 70’s important authors like [1] and [10] started using corotational
orthogonal frames to analise geometrical nonlinearities, [2] used convected frames. Coro-
tational formulations uses a element-fixed orthogonal frame which remains orthogonal as
the element deforms elastically. As the element size becomes small enough linear relations
are permited locally.

In this formulation three configurations are of main importance, those are: initial con-
figuration, corotational configuration and current configuration. Between the initial and
corotational configurations there is only rigid body motion and between the corotational
and current configuration pure deformational motion is expected. Axial and angular defor-
mations in the current configuration are measured with respect to the initial configuration,
as in the Total Lagrangian formulation. Two coordinate systems should be used: A global
inertial framework and a local coordinate system, this coordinate systems undergoes large
rotations and displacements as is attached to the riser finite element nodes. The nodal dis-
placements measured from the local system in the current configuration are small enough
to allow the use of the linear beam theory, in particular, the Euler-Bernoulli beam
theory.

As stated above, the global displacement vector p is decomposed in two parts: rigid
body displacements and deformational displacements, the latter containing elongations
and deformational rotations. In two-dimensional beam analysis the extraction of the de-
formational displacement is made using the local coordinate system rotations and trans-
lations. The global and local displacement vectors, p and pl respectively, are shown in
equations 1 and 2

p =
{
u1 v1 θ 1 u2 v2 θ 2

}
(1)

pl =
{
ul θ 1l θ 2l

}
(2)

in equation 2, ul represents the riser element elongation, θ 1l and θ 2l represents the angular
deformations of the element, see Figure 1. Based on Figure 1 the local and global nodal
displacements are related by the following equations

ul =
√

((X2 + u2) − (X1 + u1))2 + ((Y2 + v2) − (Y1 + v1)) − L 0 (3)
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Figure 1: Global and local frames used in the corotational beam element.

β = arctan

(
Y2 + v2 − (Y1 + v1)

X2 + u2 − (X1 + u1)

)
(4)

θ il = θ i + β 0 − β, i = 1, 2. (5)

where β represents the rigid body rotation of the local coordinate system, β0 is the element
inclination in the initial configuration.

Following the corotational formulation considerations linear relations for stress-strain
from classical beam theory can be used at a local level, the internal axial force and bending
moments are obtained as given in 6 and 7

N =
EAul
L 0

(6)

{
M1

M2

}
=

2EI

L 0

[
2 1
1 2

]{
θ 1l
θ 2l

}
(7)

As shown in the work of Crisfield (1991) a transformation matrix B that transforms
the internal force vector expressed in local coordinates, q l, to global coordinates, q, can
be obtained using simple geometrical procedures. The tangent stiffness matrix containing
the linear and nonlinear terms is obtained by taking the first variation of the internal force
vector as shown in equation 10.

B =

 − cosβ − sinβ 0 cosβ sinβ 0
− sinβ/L cosβ/L 1 sinβ/L − cosβ/L 0
− sinβ/L cosβ/L 0 sinβ/L − cosβ/L 1

 (8)

q = BT q l, q l =
[
N M1 M2

]T
(9)

δq = δBTq l + BT δq l = ktlδp + ktσδp = (ktl + ktσ) δp. (10)
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2.2 External Force Vector

The distributed self-weigth and buoyancy forces, q, in units of force per length, are
lumped on the nodes using hermitian functions, this nodal forces always points vertically
downwards. This forces are considered as dead loads and are applied incrementally in the
static stage of the solution.

q = g(ρpAp − ρeAe) (11)

in the former equation g represents gravity, ρp and ρe are the pipe density and sea water
density respectively, Ap and Ae represents the cross-sectional area of the pipe and the
outer area obtained using the external pipe diameter.

Time-varying prescribed displacement applied at the right end is modeled as harmonic
function of time with known amplitude, frequency and phase. This displacement up(t)
is imposed using the Penalty Method, physical interpretation of this method requires the
addition of a spring of large stiffness, kp, in the vertical degree of freedom of the right end
node and a external force of magnitude kp up applied in the same degree of freedom. The
imposed displacement up(t) is modeled as shown in the next equation

up(t) = A sin(ω t+ φ), (12)

in this equation A stands for the amplitude of the oscillation, ω represents the frequency of
oscillation and φ the phase. The value of penalization parameter kp should be big enough
to obtain a pseudo numering decoupling of the elastic system [6].

2.3 Numerical Methods

The equation that governs the dynamic response of the flexible hose, considering the
prestress effects due to the dead loading, is composed of the following terms: inertia, energy
dissipation (damping) and the internal force. These terms should be in equilibrium with
the external time-varying total force, as shown in Equation 13

MÜ + CU̇ + F int
S (US) = F ext

S + F ext
D (13)

KT US = F ext
S (14)

Note that in Equation 13 the term F int
S (US) represents the internal force vector associated

to the vector of nodal displacement US that represents the static configuration obtained in
the prior static analysis by solving the nonlinear equation 14. The Newton-Raphson in-
cremental iterative method is applied using the tangent stiffness KT presented in equation
10. The vector F ext

S contains static nodal forces and F ext
D dynamic nodal forces. Assem-

bled mass matrix M and damping matrix C are calculated as shown in [3]. Dynamic
nodal displacement vector U is calculated at each time step using the implicit integration
method of Newmark.

Figure 2 shows the analysis procedure, the left part shows the static analysis and
the right part the dynamic analysis. The link between these two analysis is the nodal
displacement vector US , resulting from the static analysis, based on this vector the internal
force vector F ext

S is constructed, having this vector, along the mass and damping matrices,
the initial nodal acceleration vector is calculated.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 4, N. 1, 2016.

DOI: 10.5540/03.2016.004.01.0077 010077-4 © 2016 SBMAC

http://dx.doi.org/10.5540/03.2016.004.01.0077


5

Incremental

Iterative

norm(Resid)<Tol

F

S

U

S

F

 int

S

dU/dt

d

2

U/dt

2

M

C

F

D

F

eff

, K

eff

WorkRatio<Tol

Iterative

U

N

incre

N

steps

Yes Yes

No No

Prestrees Dynamic

Figure 2: Solution procedure to calculate dynamic response of prestressed hose.
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Figure 3: Deformation of the flexible hose at diferent time intervals.

3 Dynamic Analysis

The dynamic response of a submerged flexible hose connecting two floating platforms
is going to be analyzed, as shown in Figure 3 the left end allows rotation but no displace-
ment, the vertical displacement of the right end is prescribed. Is supposed that the hose
undergoes large deflections and rotations, keeping the strains small enough to consider
elastic response. The whole analysis is divided in two stages, each one with different ob-
jectives. The first stage objective is to reach the static configuration of the hose under
dead loads, as buoyancy and self-weight, in the second stage the dynamic response of the
hose under the effects of a time-varying displacement at the right end is obtained.

Table 1 shows the physical properties of the hose and the characteristics of the harmonic
displacement. Figure 4a shows the displacement history applied at the right end node.
Figures 4b to 4e shows the response of the hose for different points of interest. The static
response is not taking in consideration in these figures and only dynamic response is shown.
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Table 1: Simulation physical parameters.

Parameter Value

External diameter De (mm) 273

Wall thickness tw (mm) 12,7

Total length L (m) 150

Hose density ρr (kg/m3) 7850

Elastic modulus E (Pa) 2, 08 × 1011

Harmonic force amplitude AY (mm) 8

Harmonic force frequency f (Hz) 1
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(a) Right end vertical displacement.

0 1 2 3 4 5 6 7 8 9 10
−94

−93

−92

tiempo [s]

D
es

lo
ca

m
en

to
 [m

]

(b) Right end Horizontal displacement.
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(c) Middle point vertical displacement.

0 1 2 3 4 5 6 7 8 9 10
−50

−48

−46

−44

tiempo [s]

D
es

lo
ca

m
en

to
 [m

]

(d) Middle point horizontal displacement.
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(e) Left end angular movement.

Figure 4: Dynamic response for several points on the hose.

4 Conclusions

In two-dimensional analysis, the co-rotational formulation gives a simple way to cal-
culate the tangent stiffness matrix necessary to the calculation of the static and dynamic
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response. This is possible because rotations can be added, in three-dimensional analysis
this gets more complex, and geometric methods to determine the relation between in-
finitesimal displacements in local coordinates and global coordinates must be used. The
penalty method used to impose the harmonic displacement introduces numerical error
that can destabilize the algorithm, stiffness proportional damping dissipates this errors
stabilizing the algorithm.
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