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Abstract. This paper proposes a comparison of the performance of two approaches for
nonlinear system identification using Volterra series. The first approach uses the harmonic
probing method. The second one requires only the input and output data. To illustrate the
results and applicability a Duffing system is used.
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1 Introduction

The identification of nonlinear behavior in mechanical systems has been extensively
studied in recent problems of structural dynamics [10]. Over the past few decades, a wide
variety of complex phenomena have encouraged the development of new methods to detect
nonlinear effects inherent in complex systems [2,5]. Among them, the Volterra series have
demonstrated to be useful tool and widely used in several engineering applications [6].
The present paper explores two current methods based on Volterra series for nonlinear
system identification. The first approach is a white box modeling and the solution is
computed by the harmonic probing algorithm using the Fourier transform of the Votlerra
kernels known as higher-order frequency response functions (HOFRFs) [1,3,9]. The second
one uses the discrete-time Volterra series expanded onto orthonormal Kautz basis [4, 7,
8]. Thus, the goal of the present paper is to evaluate and to compare both methods
seeking further applications of structural dynamics. The paper is organized as follows. In
section 2, the Volterra series and the relevant aspects of the harmonic probing method
are summarized. In section 3, the grey box Volterra-Kautz models are briefly reviewed.
A numerical application involving a Duffing oscillator is used to illustrate the methods.
Section 4 discusses the results reached by each method. Finally, the final remarks are
presented in section 5.
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2 Volterra series and harmonic probing algorithm

A Duffing oscillator with nonlinear effects is described by:

mÿ(t) + cẏ(t) + k1y(t) + k3y
3(t) = u(t) (1)

The Volterra series allows to describe the output y(t) of the system in Eq. (1) as [6]:

y(t) =

∫ ∞
-∞

h1(τ1)u(t−τ1)dτ1︸ ︷︷ ︸
y1(t)

+

∫∫∫ ∞
-∞

h3(τ1, τ2, τ3)u(t−τ1)u(t−τ2)u(t−τ3)dτ1dτ2dτ3︸ ︷︷ ︸
y3(t)

(2)

where y1(t) is the linear and y3(t) is the cubic polynomial contribution, u(t) is the excita-
tion signal, h1(τ1) and h3(τ1, τ2, τ3) are the Volterra kernels. These kernels can be written
in the frequency domain as:

H1(ω1) =

∫ ∞
−∞

h1(τ1)e-jω1τ1dτ1 (3)

H3(ω1, ω2, ω3) =

∫∫∫ ∞
−∞

h3(τ1, τ2, τ3)e-jω1τ1e-jω2τ2e-jω3τ3dτ1dτ2dτ3 (4)

The harmonic probing algorithm requires the analytical terms known as higher-order
frequency response functions (HOFRFs). Assuming, H (±jω) = H (±ω) and u(t) =
Acos(ωt) = A

2 (ejωt + e-jωt), the contributions of the output y(t) can be given by [3]:

y1(t) =
A

2
H1(ω)ejωt +

A

2
H1(−ω)e-jωt (5)

y3(t) =
A3

8
H3(ω, ω, ω)e3jωt +

3A3

8
H3(ω, ω,−ω)ejωt

+
3A3

8
H3(ω,−ω,−ω)e-jωt +

A3

8
H3(−ω,−ω,−ω)e-3jωt (6)

where the HOFRFs are computed as:

H1(ω) =
1

k1 + jcω −mω2
, H3(ω, ω, ω) = −k3H

3
1 (ω)H1(3ω) (7)

It is worth to note that the HOFRFs are directly related with the physical parameters
from equation of motion in Eq. (1). In order to illustrate the method, it was employed the
parameters of mass m = 1 kg, damping c = 10 N.s/m, linear stiffness k1 = 104 N/m and
the cubic stiffness k3 = 109 N/m3. The reference data was obtained by solving numerically
Eq. (1) through the Newmark method and the Newton-Raphson algorithm. The sampling
rate and number of samples used were Fs = 500 Hz and K = 1024, respectively, and time
duration of 2.0460 seconds. The force applied was u(t) = Acos(ωt) with amplitude of
A = 0.5981 N and the excitation frequency in ω = 15.9155 Hz. Figure 1 shows the kernels
H1(ω1) and H3(ω1, 1, 1) as well as their contributions y1 and y3.
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(a) First-order kernel H1(ω1) .
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(b) Linear contribution.
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(c) Third-order kernel H3(ω1, 1, 1).
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(d) Cubic contribution.

Figure 1: Analysis of the frequency response functions and the respective contributions
predicted by harmonic probing method when is applied the input u(t) = Acos(ωt) with
excitation frequency in ω = 15.9155 Hz and amplitude A = 0.5981 N.

3 Identification using discrete Volterra-Kautz models

The input and output signals can be obtained through experimental measurements.
So, the extraction of the kernels can be performed directly in the discrete-time domain.
The idea is to describe the output y(k) of a nonlinear system as:

y(k) =

∞∑
η=1

N1∑
n1=0

N2∑
n2=0

. . .

Nη∑
nη=0

Hη(n1, n2 . . . , nη)

η∏
i=1

u(k − ni) = y1(k) + y2(k) + . . . (8)

where Hη(n1, n2 . . . , nη) are the discrete-time Volterra kernels. Unfortunately, the large
number of parameters N1, N2, . . . , Nη implies in excessive computational requirements and
overparametrization effects to identify these kernels. In order to overcome the drawbacks
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an orthonormal expansion can be used and the kernels mighty be approximated as follows:

Hη(n1, n2, . . . , nη) ≈
J1∑
i1=1

J2∑
i2=1

. . .

Jη∑
iη=1

Bη (i1, i2, . . . , iη)

η∏
j=1

ψij (nj ; θj) (9)

where Bη (i1, i2, . . . , iη) are the coefficients of the orthonormal basis and ψiη(nη; θη) are
the Kautz functions that depends of the parameters θη = [zη z̄η] in which zη = esη .∆t

with ‖ zη ‖, ‖ z̄η ‖<1 (stability condition) where ∆t denotes the sampling rate and

sη = −ξη$η + j$η

√
1− ξ2

η are the parameters in the s-domain. More information about

Kautz filters structure and their applicability can be found in [4, 7, 8] . The Kautz filters
parameters are obtained minimizing the normalized mean square error function (NMSE):

min F =
‖y(k)− ŷ(k)‖
‖y(k)‖

(10)

subject to $(low)η ≤ $η ≤ $(up)η, ξ(low)η ≤ ξη ≤ ξ(up)η and $η, ξη ∈ R+ where the indexes
up and low represents the upper and lower bounds, respectively. Furthermore, y(k) is the
experimental output and ŷ(k) is the output estimated by the nonlinear model given by:

ŷ(k) =

+∞∑
η=1

yη(k; θη) (11)

⇔ ŷ(k) =

+∞∑
η=1

J1∑
i1=1

J2∑
i2=1

. . .

Jη∑
iη=1

Bη (i1, i2, . . . , iη)

η∏
j=1

lij (k; θj) (12)

This problem can be solved through the least squares approach:

Φ = (ΛTΛ)−1ΛTy (13)

where

Λ =
[
l1(k) . . . lJ1(k) l21(k) l1(k)l2(k) . . . l2J2(k) . . . l3J3(k) . . .

]
,

with lij (k; θj) =
∑V−1

nj=0 ψij (nj ; θj)u(k − ni) and the vector of unknown terms is given by:

Φ =
[

B1(1) . . . B1(J1) B2(1, 1) . . . B2(J1, J2) . . . B3(J1, J2, J3) . . .
]T
,

and y =
[
y(1) y(2) . . . y(K)

]T
is the output measured with K samples recorded.

In order to illustrate the approach, the benchmark used in section 2 is also used
here to compare the estimatives. Firstly, the sequential quadratic programming (SQP)
algorithm was employed to solve the optimization problem in Eq. (10) in order to obtain
the Kautz filters parameters. To attend this purpose, it were used the lower and upper
values $(low)η = 10 × 2π, $(up)η = 30 × 2π, ξ(low)η = 0.0010 and ξ(sup)η = 0.0500 with
η = 1, 3. The optimal parameters of the Kautz filters were found after 41 iterations and are
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given by z1 = 0.9669 + j0.2095 for the first kernel with J1 = 2 and z3 = 0.9511 + j0.2667
for the third kernel with J3 = 2. The contribution of the second-order kernel was not
considered here because the system has only cubic stiffness. In addition, it is important
to emphasize that the number of parameters to be estimated was drastically reduced by
using the orthonormal expansion once K � Jη. Figure 2 shows the frequency response
functions of the Volterra kernels denoted by H1(ω1) and H3(ω3, 1, 1) and the respective
linear and cubic contributions predicted.
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Figure 2: Amplitude of the frequency response functions and the contributions predicted
by Volterra-Kautz method when is applied u(t) = Acos(ωt) with excitation frequency in
ω = 15.9155 Hz and amplitude A = 0.5981 N.

4 Discussions and comparison between the approaches

Through the results found its possible to note that the harmonic probing estimatives
in Figure 1 present similar behavior compared to the obtained through Volterra-Kautz
models as illustrated in Figure 2, but they are slightly different in amplitude. Additionally,
the Figures 3(a) and 3(b) show the total output ŷ = y1 + y3 predicted by each method
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in comparison to the output simulated where it is possible to note a good agreement.
Figures 3(c) and 3(d) illustrate the power spectral density (PSD) of the outputs that
were calculated using Welch method with Hanning window with 512 samples and 50 %
of overlap. In the PSD plot, it is possible to observe that the models were able to detect
the presence of fundamental harmonic close to 16 Hz and the respective third-harmonic
3× 16 = 48 Hz.
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Figure 3: Comparison between the results obtained using the harmonic probing model
(left side) and the Volterra-Kautz model (right side).

5 Final remarks and perspectives

The results obtained have shown the applicability of two methods to characterize and
detect nonlinear behavior. The harmonic probing method is quite illustrative when are
known analytically the differential equations that describe the problem. Now, if there is
no knowledge mechanical system and are available only the time series of input and output
measures, the Volterra-Kautz models are very useful. Further applications are concerned
in modeling and identification of systems with multiple input and multiple output data.
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