Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Projeto de Controle PID por Alocação de Pólos para Sistemas Dinâmicos com Atraso Puro de Tempo

Jéssica Brenda Neves Aguiar, Ginalber Luiz de Oliveira Serra¹

Instituto Federal de Educação, Ciência e Tecnologia do Maranhão

Departamento de Eletroeletrônica

Laboratório de Inteligência Computacional Aplicada à Tecnologia

Av. Getulio Vargas, 04, Monte Castelo, CEP 65030-005, São Luis-MA, Brasil.

Resumo.Neste artigo é proposta uma metodologia para projeto de controle PID, no domínio do tempo contínuo, por alocação de pólos para sistemas dinâmicos com atraso puro de tempo. O controlador projetado é implementado para controle de temperatura, por meio de uma plataforma de aquisição de dados de alto desempenho (LabVIEW).

Palavras-chave. Controlador PID, Alocação de pólos, Sistemas dinâmicos, Atraso puro de tempo, Sistemas lineares

1 Introdução

Atualmente, com o avanço da tecnologia surge a necessidade de controle de processos industriais cada vez mais complexos. Neste âmbito, o controlador PID (Proporcional-Integral-Derivativo) tem sido o mais utilizado [5], [1], [7], [4]. Sua simplicidade, robustez e capacidade de fornecer o desempenho adequado na maioria de suas aplicações, são razões que fizeram deste controlador tão popular no meio industrial e acadêmico [9], [8]. Porém, para maior eficiência em seu desempenho de controle, torna-se de suma importância o estudo, análise e proposta de novas metodologias para ajuste dos parâmetros do controlador PID.

Na literatura há uma riqueza em termos de ajuste de parâmetros do controlador PID. Em [2] é apresentada uma análise dos métodos de ajuste do controlador PID tais como o método de Ziegler-Nichols, ajuste de Kappa-tau e projeto baseado nas especificações das margens de ganho e fase do sistema. Em [3], os parâmetros do controlador PID são ajustados automaticamente, baseado nos dados de entrada e saída do sistema a ser controlado. Neste contexo, é possível observar que o controlador PID tem sido uma boa alternativa para controle de sistemas dinâmicos. Neste artigo, é proposta uma metodologia para projeto de controle PID, no domínio do tempo contínuo, por alocação de pólos, para sistemas dinâmicos com atraso puro de tempo. Esta metodologia é aplicada a um sistema térmico

¹jessica.ifma@outlook.com, ginalber@ifma.edu.br

identificado por meio de dados experimentais de entrada e saída, via sistema de aquisição de dados baseado em instrumentação virtual/eletrônica de alto desempenho (LabVIEW).

2 Formulação do problema de controle

Nesta seção, serão apresentadas as formulações matemáticas para o projeto de controladores PID para sistemas dinâmicos de segunda ordem com atraso puro de tempo.

2.1 Projeto de controle PID por alocação de pólos

O sistema dinâmico a ser controlado é representado pela seguinte função de transferência de segunda ordem:

$$H(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2},\tag{1}$$

onde K é o ganho DC, ω_n é a frequência natural não amortecida e ζ é o coeficiente de amortecimento.

O atraso puro de tempo $(e^{-\tau_d s})$ não pode ser representado, exatamente, por uma razão de polinômios em s. Portanto, neste artigo, considera-se a aproximação de Padè de segunda ordem, dada por:

$$e^{-\tau_d s} \approx \frac{\tau_d^2 s^2 - 6\tau_d s + 12}{\tau_d^2 s^2 + 6\tau_d s + 12},\tag{2}$$

onde τ_d corresponde ao atraso puro de tempo do sistema a ser controlado.

A função de transferência do controlador PID, no domínio do tempo contínuo, é dada por:

$$C(s) = \frac{K_d s^2 + K_p s + K_i}{s},\tag{3}$$

onde K_p é o ganho proporcional, K_i é o ganho integral e K_d é o ganho derivativo.

A função de transferência em malha-fechada do sistema de controle, resulta em:

$$M(s) = \frac{H(s)e^{-\tau_d s}C(s)}{H(s)e^{-\tau_d s}C(s) + 1}.$$
(4)

A função de transferência em malha-fechada do sistema de controle PID é, então, dada por:

$$M(s) = \frac{(K_d s^2 + K_p s + K_i)(\tau_d^2 s^2 - 6\tau_d s + 12)\omega_n^2}{(K_d s^2 + K_p s + K_i)(\tau_d^2 s^2 - 6\tau_d s + 12)\omega_n^2 + s(s^2 + 2\zeta\omega_n s + \omega_n^2)(\tau_d s^2 + 6\tau_d s + 12)}.$$
 (5)

Substituindo-se, adequadamente, as funções de transferência do controlador PID, do sistema dinâmico a ser controlado e a equação (2) como aproximação de Padè para o atraso puro de tempo, na equação da função de transferência em malha fechada do sistema

de controle, definida na equação (4), obtem-se o polinômio característico do sistema de controle, dado por:

$$\tau_d^2 s^5 + (6\tau_d + K_d \omega_n^2 \tau_d^2 + 2\omega_n \tau_d^2 \zeta) s^4 + (12 + K_p \omega_n^2 \tau_d^2 + 12\omega_n \tau_d \zeta - 6K_d \omega_n^2 \tau_d + \omega_n^2 \tau_d^2) s^3 + (24\omega_n \zeta + 12K_d \omega_n^2 + 6\omega_n^2 \tau_d + K_i \omega_n^2 \tau_d^2 - 6K_p \omega_n^2 \tau_d) s^2 + (12K_p \omega_n^2 - 6K_i \omega_n^2 \tau_d + 12\omega_n^2) s + 12K_i \omega_n^2.$$
(6)

Na alocação dos pólos, faz-se necessário usar a equivalência polinomial para a descoberta dos parâmetros do controlador, através de um polinômio em s de quinta ordem, dada por:

$$(s - p_1)(s - p_2)(s - p_3)(s - p_4)(s - p_5),$$
(7)

onde p_1, p_2, p_3, p_4 e p_5 são os pólos especificados pelo projetista, a serem alocados.

Resolvendo-se a equação (6), encontra-se τ_d^2 como coeficiente de s^5 . Assim, tornase necessário, para a alocação de pólos, a divisão dos coeficientes desta equação característica por τ_d^2 ou a multiplicação dos termos do polinômio dado na equação (7) por τ^2 . Considerando-se o segundo caso, ou seja, o polinômio na equação (7) é multiplicado por τ_d^2 , tem-se:

$$(s - p_1)(s - p_2)(s - p_3)(s - p_4)(s - p_5) = (K_d s^2 + K_p s + Ki)$$

$$(\tau_d^2 s^2 - 6\tau_d s + 12)\omega_n^2 + s(s^2 + 2\zeta\omega_n s + \omega_n^2)(\tau_d s^2 s^2 + 6\tau_d s + 12).$$
(8)

A partir das igualdades obtidas, obtem-se um sistema de equações em função dos parâmetros do controlador $(K_p, k_i \in K_d)$, dos valores de ω_n , ζ e dos pólos p_1 , p_2 , p_3 , p_4 e p_5 especificados, dado por:

$$s^{5}(\tau_{d}^{2}) = (\tau_{d}^{2})s^{5}, \tag{9}$$

$$s^{4}(6\tau_{d} + K_{d}\omega_{n}^{2}\tau_{d}^{2} + 2\omega_{n}\tau_{d}^{2}\zeta) = -(p_{1} + p_{2} + p_{3} + p_{4} + p_{5})\tau_{d}^{2}s^{4},$$
(10)

$$s^{3}(12 + K_{p}\omega_{n}^{2}\tau_{d}^{2} + 12\omega_{n}\tau_{d}\zeta - 6K_{d}\omega_{n}^{2}\tau_{d} + \omega_{n}^{2}\tau_{d}^{2}) = (p_{1}p_{2} + p_{1}p_{3} + p_{1}p_{4} + p_{2}p_{3} + p_{1}p_{5} + p_{2}p_{4} + p_{2}p_{5} + p_{3}p_{4} + p_{3}p_{5} + p_{4}p_{5})\tau_{d}^{2}s^{3},$$
(11)

$$s^{2}(24\omega_{n}\zeta + 12K_{d}\omega_{n}^{2} + 6\omega_{n}^{2}\tau_{d} + K_{i}\omega_{n}^{2}\tau_{d}^{2} - 6K_{p}\omega_{n}^{2}\tau_{d}) = -(p_{1}p_{2}p_{3} + p_{1}p_{2}p_{4} + p_{1}p_{2}p_{5} + p_{1}p_{3}p_{4} + p_{1}p_{3}p_{5} + p_{2}p_{3}p_{4} + p_{1}p_{4}p_{5} + p_{2}p_{3}p_{5} + p_{2}p_{4}p_{5} + p_{3}p_{4}p_{5})\tau_{d}^{2}s^{2}, \quad (12)$$

$$s^{1}(12K_{p}\omega_{n}^{2} - 6K_{i}\omega_{n}^{2}\tau_{d} + 12\omega_{n}^{2}) = (p_{1}p_{2}p_{3}p_{4} + p_{1}p_{2}p_{3}p_{5} + p_{1}p_{2}p_{4}p_{5} + p_{1}p_{3}p_{4}p_{5} + p_{2}p_{3}p_{4}p_{5})\tau_{d}^{2}s,$$
(13)

$$s^{0}(12K_{i}\omega_{n}^{2}) = -p_{1}p_{2}p_{3}p_{4}p_{5}\tau_{d}^{2}s^{0}.$$
(14)

Assim, os ganhos do controlador PID são obtidos através da solução do sistema de equações (9) a (14):

$$K_{p} = \frac{-(-p_{1}p_{2}p_{3}\tau_{d}^{2} - 12KK_{d}\omega_{n}^{2} - 6\omega_{n}^{2}\tau_{d} - KK_{i}\omega_{n}^{2}\tau_{d}^{2} - 24\omega_{n}\zeta - p_{1}p_{2}p_{4}\tau_{d}^{2} - p_{1}p_{2}p_{5}\tau_{d}^{2} - p_{1}p_{2}p_{5}\tau_{d}^{2} - p_{1}p_{2}p_{5}\tau_{d}^{2} - p_{1}p_{2}p_{5}\tau_{d}^{2} - p_{2}p_{3}p_{5}\tau_{d}^{2} - p_{2}p_{3}p_{5}\tau_{d}^{2} - p_{2}p_{4}p_{5}\tau_{d}^{2} - p_{2}p_{4}p_{5}\tau_{d}^{2} - p_{2}p_{4}p_{5}\tau_{d}^{2} - p_{3}p_{4}p_{5}\tau_{d}^{2} - p_{3}p_{4}\tau_{d}^{2} - p_$$

$$K_i = \frac{-(p_1 p_2 p_3 p_4 p_5)\tau_d^2}{12K\omega_n^2},$$
(16)

$$K_d = \frac{(-s1 - s2 - s3 - s4 - s5)\tau_d - 2\omega_n \tau_d \zeta - 6}{K\omega_n^2 \tau_d}.$$
(17)

3 Resultados Experimentais

Nesta seção, serão apresentados os principais resultados experimentais quanto a implementação da metodologia proposta para o controle em tempo real de temperatura de um sistema térmico monofásico (220 VAC).

3.1 Descrição da plataforma de aquisição de dados

A plataforma de aquisição de dados é constituída pelo software LabVIEW, pelo CompactRIO 9073, pelos módulos de entrada analógica NI 9215 e NI 9219, e pelo módulo de saída analógica NI 9263, da National Instruments. A parte de sensoriamento é constituída pelo sensor de temperatura LM 35, o qual possui um ganho de 10 mV/°C e um circuito atuador composto pelo CI TCA 785, capaz de controlar o ângulo de disparo do TRIAC através da variação de tensão em um de seus pinos. O sistema térmico monofásico (220 VAC) apresenta um comportamento dinâmico cujas temperaturas estão compreendidas entre 25°C e 265°C. O ambiente de instrumentação virtual é baseado no software Lab-VIEW, de programação gráfica, no qual foi desenvolvido um sistema supervisório para análise em tempo real do sistema de controle em malha fechada. Os sinais de temperatura e de voltagem são recebidos pelo sistema de aquisição de dados, onde a temperatura é comparada com o valor de referência gerando um sinal de erro que definirá a ação de controle PID. O controlador PID implementado, por sua vez, varia o valor eficaz da voltagem fornecida ao sitema térmico, variando consequentemente a temperatura no sentido de rastrear o sinal de referência. A plataforma do sistema de controle em tempo real do processo térmico é mostrada na figura 1.

Figura 1: Plataforma do sistema de controle PI/PID

3.2 Modelagem do sistema térmico

Para identificação do sistema térmico foram utilizados os dados de entrada (voltagem rms) e saída (temperatura), conforme mostrados na figura 2. O atraso puro de tempo foi estimado através da correlação cruzada entre os dados de entrada e saída do sistema térmico, resultando em um atraso puro de tempo de 2.58 segundos.

Figura 2: Sinais de entrada e saída do sistema térmico

Através do método de mínimos quadrados, encontrou-se os valores de $\zeta = 10.0072$, $\omega_n = 0.4336$ e o ganho DC K = 1.3670 do sistema térmico, resultando na seguinte função de transferência de segunda ordem:

$$H(s) = \frac{0.257}{s^2 + 8.678s + 0.188}e^{-2.58s}.$$
(18)

A região factível dos pólos para o projeto de controle PID é mostrada na Figura 3. Especificando-se os pólos $p_1 = -2.4496$, $p_2 = -0.0577 + 0.0460i$, $p_3 = -0.0577 - 0.0460i$, $p_4 = -0.5260 - 0.6627i$ e $p_5 = -0.5260 + 0.6627i$, os ganhos $K_p = 3.9$, $K_i = 0.2$ e $K_d = 10$ foram obtidos. A validação da função de transferência de primeira ordem obtida é mostrada na Figura 4. O desempenho do controlador PID, em tempo real, para controle do sistema térmico através da plataforma de alto desempenho, considerando-se inicialmente a referência de $100^{\circ}C$ e, posteriormente, a referência de $150^{\circ}C$, é mostrado na Figura 5.

Figura 3: Região factível para projeto de controle PID

Figura 4: Validação da função transferência de segunda ordem do sistema térmico

Figura 5: Controle PID em tempo real do sistema térmico

4 Discussões

Em comparação com os métodos utilizados em [2] e em [3], a metodologia proposta, neste artigo, apresentou maior simplicidade e facilidade em sua compreensão e implementação, além de conter o atraso puro de tempo em sua formulação matemática.

A modelagem matemática do atraso puro de tempo é de suma importância, pois atrasos de tempo possuem efeitos desestabilizadores no sistema de controle. Consequentemente, torna-se necessário que os modelos de sistemas a serem utilizados, em problemas de controle, possuam atrasos puros de tempo em sua formulação sempre que os sistemas reais os apresentarem. A metodologia proposta para o projeto de controle PID (Proporcional-Integral-Derivativo), no domínio do tempo contínuo, por alocação de pólos para sistemas dinâmicos com atraso puro de tempo mostrou-se, através dos resultados experimentais, flexível e eficiente para a escolha dos pólos de acordo com o desempenho desejado pelo projetista.

5 Conclusão

A metodologia proposta mostrou-se eficiente em aplicações para sistemas dinâmicos com atraso puro de tempo, uma vez que as estratégias de controle PID apresentou bom desempenho para rastrear a trajetória de referência adotada, em tempo real, através da

plataforma de aquisição de dados virtual/eletrônica de alto desempenho. A metodologia proposta apresentou como limitações a escolha dos pólos a serem utilizados, pois tornou-se necessário a obtenção prévia da região factível da equação em malha fechada do sistema, e a aplicabilidade da metodologia que é direcionada apenas para sistemas lineares e com ausência de incertezas. Como propostas para trabalhos futuros, consideram-se os seguintes aspectos de interesse:

- Ajuste dos parâmetros do controlador PID via computação evolucionária, uma vez que aproximações foram adotadas para a formulação do problema de controle proposto;
- Análise e implementação da metodologia proposta, via redes neurais, para sistemas com não-linearidades e/ou incertezas.

Agradecimentos

Os autores agradecem à FAPEMA pelo fomento desta pesquisa.

Referências

- K. H. Ang e Yun Li, PID control system analysis, design, and technology, vol. 13, 559-576, (2005).
- [2] P.Cominos, N.Munro, PID controllers: recent tuning methods and design to specification, Control Theory and Applications, IEE Proceedings, vol. 149, 46-53, (7th January 2002).
- [3] K. Hayashi e T. Yamamoto, Design of a One-Shoot Tuning PID Controller, IEEE International Conference on Control Applications (CCA), 712-717,(2011).
- [4] D. H. KIM, Auto-tuning of reference model based PID controller using immune algorithm, IEEE Evolutionary Computation. CEC '02, vol. 1, 483-488, (2002).
- [5] C. L. LIN e H. Y. JAN , Multiobjectuve PID control for a linear brushless DC motor: an evolutionary approach, Electric Power Applications, IEE Proceedings, Vol. 149, 397-406,(2002)
- [6] A. Manitius e A. W. Olbrot, Finite spectrum assignment problem for systems with delays, Automatic Control, IEEE Transactions on Automatic Contr., vol. 24, 541-552, (1979).
- [7] M. H. Moradi, New techniques for PID Controller Design, Control Applications IEEE, vol. 2, 903-908, (2003).
- [8] F. Padula e A. Visioli, On the Stabilizing PID Controllers for Integral Processes, Automatic Control IEEE, vol. 57, 494-499, (2012).
- [9] G.L.O. Serra, Frontiers in Advanced Control Systems, InTech, Cap.6, (2012).