Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Modelagem matemática da resposta humoral contra $$Trypanosoma\ brucei$

Elisa Oliveira de Souza¹

Departamento de Engenharia Elétrica, CEFET/RJ, Rio de Janeiro, RJ Roberto Carlos Antunes Thomé²

Departamento de Matemática, CEFET/RJ, Rio de Janeiro, RJ Hyun Mo Yang³

Departamento de Matemática Aplicada, UNICAMP, Campinas, SP

Resumo. Um modelo matemático foi desenvolvido para avaliar a resposta imune humoral contra a infecção do *Trypanosoma brucei rhodesiense* (aguda) ou *gambiense* (crônica). A análise do modelo mostra um equilíbrio não-trivial local e assintoticamente estável evidenciando a agressividade na doença em casos com tratamento tardio ou não tratados.

Palavras-chave. *Trypanosoma brucei*, Doença do Sono, Sistema Imunológico, Modelagem Matemática.

1 Introdução

A Tripanossomíase Humana Africana (HAT) ou Doença do Sono é causada pelo parasita Trypanosoma brucei rhodesiense (aguda) ou gambiense (crônica) e tem como principal vetor a mosca tsé-tsé, pertencente ao gênero Glossina. Essas moscas estão distribuídas por 36 países da África subsaariana, oferecendo risco a cerca de 60 milhões de pessoas. A infecção acomete o sistema nervoso central, causando distúrbios neurológicos graves. Sem tratamento, a doença é fatal. O T. brucei não possui uma forma intracelular, multiplicando-se como as formas tripomastigotas que circulam no sangue de mamíferos e de outros espaços extracelulares [3]. Portanto, assume-se que o mecanismo de defesa celular não é ativado, e somente a ação da resposta humoral é estudada, logo, apenas as células B e as células B diferenciadas em plasmócitos são consideradas, além de uma taxa adicional de mortalidade dessas células por apoptose (μ_B^d) a fim de conter os parasitas.

A principal proteína expressada na superfície dos T. brucei presentes na corrente sanguínea é a glicoproteína de superfície variante (VSG). Aproximadamente 10^7 cópias de uma única VSG são encontradas na superfície, protegendo o parasita contra o sistema imune e, por conseguinte, garantido sua integridade [1].

¹eos1326@gmail.com

 $^{^{2}} roberto. thome@cefet-rj.br\\$

³hyunyang@ime.unicamp.br

 $\mathbf{2}$

Os anticorpos são produzidos continuamente contra esta VSG, até cada parasita individualmente alternar a expressão de uma VSG para outra, contra a qual novos anticorpos devem ser direcionados. Essa variação antigênica permite que a população de T. brucei escape da resposta imune.

Nesse caso, presume-se que os parasitas presentes na corrente sanguínea encontrem recursos (denominados H) produzidos a uma taxa constante λ_H , e naturalmente degradado a uma taxa per capita μ_H . O parâmetro α representa a capacidade do *T. brucei* encontrar e consumir nutrientes a fim de crescer e se multiplicar por divisão mitótica. Assim, τ é o número médio de descendentes gerados por divisão, sendo $\tau \leq 2$.

O modelo que será apresentado destaca somente a resposta humoral, posto que não há resposta celular, como no caso de outras tripanossomíases [2]. Por meio dessa análise, o modelo evidencia que a tripanossomíase africana, restrita a um continente, possui semelhança na representação matemática da dinâmica de outras tripanossomíases presentes em diversas partes do mundo. Assim, soluções encontradas para o organismo infectado para outras tripanossomíases podem ser utilizadas como referência para aprimorar ou criar técnicas no combate dessa moléstia africana.

2 Modelo Matemático

O diagrama abaixo (Figura 1) representa um esquema da dinâmica da interação entre o sistema imunológico e o parasita *Trypanosoma brucei* utilizando os compartimentos do sistema de equação diferenciais ordinárias apresentado em (1). As flechas indicam o fluxo e influência entre as populações.

Figura 1: Diagrama da dinâmica populacional.

Considerando o diagrama acima e baseado nas discussões da seção anterior, um modelo matemático simplificado é apresentado [4]. O seguinte conjunto de equações ordinárias descreve o modelo:

$$\begin{pmatrix}
\frac{dH}{dt} = \lambda_H - \mu_H H - \alpha HT \\
\frac{dT}{dt} = \tau \alpha HT - \mu_T T - \epsilon T B_a \\
\frac{dB}{dt} = \lambda_B - \mu_B B - \gamma_B BT \\
\frac{dB_a}{dt} = \gamma_B BT - (\mu_B + \mu_B^d) B_a + \delta_B B_a T.
\end{cases}$$
(1)

As variáveis de estado e os parâmetros utilizados no modelo, assim como as suas unidades, são definidas na Tabela 1.

Variável /Parâmetro	Definição	Unidades
Н	População de células hospedeiras (Recursos)	[H]
Т	População de Trypanosoma brucei	[T]
В	População de células B ou Linfócitos B	[B]
B_a	População de células ativadas ou plasmócitos	[B]
α	Coeficiente (taxa) de infecção do <i>T. brucei</i>	$[T]^{-1}$ dia ⁻¹
ϵ	Taxa de resposta humoral	$[B]^{-1}$ dia ⁻¹
γ_B	Taxa de ativação de células B	$[T]^{-1}$ dia ⁻¹
au	Número de descendentes de <i>T.brucei</i>	$[T][H]^{-1}$
	produzidos por divisão mitótica	
δ_B	Taxa de proliferação de células B plasmáticas	$[T]^{-1}$ dia ⁻¹
λ_H	Taxa de reprodução de células hospedeiras	[H]dia ⁻¹
λ_B	Taxa de reprodução de células B	[B]dia ⁻¹
μ_H	Taxa de mortalidade de células hospedeiras	dia^{-1}
μ_T	Taxa de mortalidade de $T. brucei$	dia ⁻¹
$\mu_B(\mu_B^d)$	Taxa de mortalidade de células B (adicional)	dia ⁻¹

Tabela 1: Variáveis e parâmetros utilizados no modelo matemático

Por meio da análise do sistema de equações diferenciais (1), obteve-se os pontos de equilíbrio. O ponto trivial (H_0, T_0, B_0, B_{a0}) descreve que o sistema imune está em repouso sem o parasita e é dado por:

$$P_0 = \left(\frac{\lambda_H}{\mu_H}, 0, \frac{\lambda_B}{\mu_B}, 0\right).$$
(2)

O ponto não-trivial $(\bar{H}, \bar{T}, \bar{B}, \bar{B}_a)$ retrata a presença do parasita e é dado por

$$\bar{P} = \left(\frac{\lambda_H}{\mu_H + \alpha \bar{T}} , \bar{T} , \frac{\lambda_B}{\mu_B + \gamma_B \bar{T}} , \frac{\gamma_B \lambda_B \bar{T}}{(\mu_B + \gamma_B \bar{T})[(\mu_B + \mu_B^d) - \delta_B \bar{T}]}\right), \tag{3}$$

onde $\overline{T} \neq 0$ é a solução [4] da equação polinomial de terceiro grau dada por

$$a_3\bar{T}^3 + a_2\bar{T}^2 + a_1\bar{T} + a_0 = 0, (4)$$

4

 com

$$a_{3} = \mu_{T} \alpha \gamma_{B} \delta_{B}$$

$$a_{2} = \mu_{T} \mu_{H} \gamma_{B} \delta_{B} + \epsilon \gamma_{B} \lambda_{B} \alpha - \tau \alpha \lambda_{H} \gamma_{B} \delta_{B} + \mu_{T} \mu_{B} \alpha \delta_{B} - \mu_{T} \alpha \gamma_{B} (\mu_{B} + \mu_{B}^{d})$$

$$a_{1} = \tau \alpha \lambda_{H} \gamma_{B} (\mu_{B} + \mu_{B}^{d}) - \tau \alpha \lambda_{H} \mu_{B} \delta_{B} - \alpha \mu_{T} \mu_{B} (\mu_{B} + \mu_{B}^{d}) + \mu_{T} \mu_{H} \mu_{B} \delta_{B}$$

$$a_{0} = \mu_{B} (\mu_{B} + \mu_{B}^{d}) (\tau \alpha \lambda_{H} - \mu_{H} \mu_{T}).$$
(5)

Para a análise da estabilidade dos pontos de equilíbrio foi utilizado o critério de Routh-Hurwitz. Assim, o ponto trivial P_0 dado em (2) é estável para $\alpha < \alpha_0$, onde

$$\alpha_0 = \frac{\mu_T \mu_H}{\tau \lambda_H}.\tag{6}$$

O ponto não-trivial é local e assintoticamente estável para $\alpha > \alpha_0$.

3 Simulação Numérica

Como a diferenciação da resposta humoral entre fraca, intermediária ou forte é descrita pela destruição de *T. brucei* circulantes por anticorpos (ϵ), então esse parâmetro citado foi analisado em três diferentes situações nas simulações numéricas. Nos gráficos abaixo estão os resultados das simulações numéricas com os valores da Tabela 2, onde consideramos $\alpha = 3\alpha_0$. Quando ϵ aumenta, a população de células ativadas B_a tende a diminuir. Para alguns valores de ϵ , há um aumento inicial de B_a (a partir de condição inicial), mas em seguida há diminuição (Figura 2 e 3). Quando a resposta é forte (caso em que $\epsilon = 100$), a população de células ativadas B_a sempre diminui (Figura 4).

Tabela 2: Valores usados nos testes numéricos											
τ	δ_B	γ_B	λ_H	λ_B	μ_T	μ_H	μ_B	μ^d_B	$lpha_0$	α	
2,00	0,05	0,01	0,20	0,80	0,06	0,01	0,05	0,20	0,0015	0,0045	

A Figura (2) exemplifica uma resposta humoral fraca, em que se admite um valor considerado pequeno para ϵ . Podemos observar um crescimento da concentração do parasita em função da taxa de resposta humoral baixa em detrimento da concentração de células hospedeiras. No primeiro momento, a concentração de células B aumenta, mas tende a diminuir, visto que parte da população de células B sofre diferenciação policional tornando-se células B ativadas. Por fim, nota-se que apesar da existência de uma resposta imune, as células hospedeiras tem sua população inicial diminuida, mostrando uma resposta humoral insuficiente devido a baixa taxa de resposta humoral (ϵ). Na sequência

Figura 2: Resposta fraca com $\epsilon = 0,001$ e T = 360 dias

Figura 3: Resposta intermediária com $\epsilon=0,1$
eT=360dias

Figura 4: Resposta forte com $\epsilon = 100$ e T = 60 dias

de gráficos, torna-se evidente como uma maior eficiência da ação dos anticorpos produz estabilidade (figura 3) e crescimento (figura 4) para a população de células hospedeiras em menos tempo em detrimento da população do parasita com consequente diminuição de células B ativadas.

010085-5

4 Conclusão

O modelo apresentado tratou da resposta imunológica humoral contra a infecção por $T. \ brucei$ e, de modo geral, as simulações numéricas mostraram que, com o aumento da ação de anticorpos, valores assintóticos de $T, H, B \in B_a$ são atingidos embora sejam observadas oscilações amortecidas nas curvas. Pode-se verificar que o aumento de parâmetros de resposta humoral promove diminuição em $T. \ brucei$ circulante protegendo, dessa maneira, as células hospedeiras de infecção. Isso pode ser explicado pela proliferação de células B ativadas e consequente aumento da liberação de anticorpos, os quais neutralizam glicoproteína de proteção do parasita, expondo o tripomastigota a lise, ou seja, a sua destruição mediada pelo sistema imune. Para trabalhos futuros pretende-se introduzir mais um parâmetro representando a variação de glicoproteínas de superfície expressa pelo parasita (VSG). Dessa forma, uma melhor compreensão na ação desse parasita contra o sistema imune humoral humano pode ser alcançada.

Agradecimentos

Os autores agradecem ao CEFET/RJ, ao CNPq e a FAPERJ (E-26/110.087/2014).

Referências

- T.R. Dagenais, B.E. Freeman, K.M. Demick, D.M. Paulnock, J.M. Mansfield, Processing and presentation of variant surface glycoprotein molecules to T cells in African trypanosomiasis, J. Immunology 183 (5), (2009).
- [2] L. S. Oliveira, Modelando a interação entre o Sistema Imunológico Humano e Trypanosoma cruzi, Dissertação de Mestrado em Matemática Aplicada, IMECC- Unicamp, (2010).
- [3] G.T. Strickland, Hunters Tropical Medicine and Emerging Infectious Diseases, WB Saunders Co., (2000).
- [4] H. M. Yang, A mathematical model to assess the immune response against *Trypanosoma cruzi* infection. Journal of Biological Systems, v. 23, p. 131-163, (2015).