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Abstract. The goal of the present work is to employ artificial neural networks as a data as-
similation method applied to shallow water equation. This model is used to represent ocean
dynamics. Data assimilation is a computational procedure to combine observation data with
model data for identifying the best initial condition (analysis) to an operational prediction
system. Here we compare two techniques: representer method and artificial neural network.
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1 Introduction

Many problems in geosciences (meteorology, oceanography, and geophysics) are mode-
led by differential equations. These problems may require the estimation of time-dependent
state variable using noisy measurements. However, the mathematical model is always an
approximation of reality [11]. This means that, the modeling error is a permanent feature.
For operational prediction systems, a strategy to deal with such uncertainty is to add some
real world information into the mathematical model. It consist of observations extracted
from the modeled phenomena (data observation). However, observed data should be care-
fully inserted in order to avoid prediction degrade. Data assimilation techniques combine
two sources - data model and observation - to produce a data analysis. The analysis is
the initial condition used in the computer model prediction.

The basic components for an operational forecasting system are: a network of observed
data, a numerical model and a data assimilation method. Data assimilation is the process
responsible for combining a mathematical model and observed data, producing an anal-
ysis (or initial condition) for a numerical prediction system. The historical evolution of
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data assimilation methods comes from function adjustment, successive corrections, anal-
ysis correction, optimal Interpolation, variational methods, Kalman filter, Monte Carlo
techniques and Artificial Neural Networks ( [4], [8], [12], [15]). Each method has different
ways to combine background values (previous forecasting) with observations. The model
presented in this work to test the methodology is linear in two dimensions:

ou 0q
a—fv—kg%—i—TUU—Fu (la)
ov dq B
a+fu+gafy+mv—Fy (1b)
dq ou Ov B
a+ <8x+8y)+rqq_0 (10)

The spatial domain is (z,y) € 2, where Q = (0, X) x (0,Y). The Coriolis coefficient is de-
noted by f; g is gravitational acceleration; ry, ., rq damping coefficients; u is the velocity
in the z-direction (or zonal velocity); v is the velocity in the y-direction (or meridional ve-
locity); g is the sea-level diturbance: if ¢ = ¢/, then the ocean is in hydrostatic balance [2];
F,, and F), are the model forcings; finally H denote ocean depth. The differential equations
(1a, 1b, and 1c) are discretized on the Arakawa C-grid with a forward-backward scheme
for time-stepping [13]. The boundary conditions we have periodic channel with rigid walls,
namely, u(z,0,t) = v(z,Y,t) = 0. The model forcings are: F, = —Cypau2/(Hp,,) and
F,=0.

2 Metodology
2.1 Variational Method: Representer Technique

The Variational Method is an data assimilation technique based on minimizing a func-
tional. However, it’s problem dependent and leads to different variational formulations
for different problems. For some cases, it is not obvious to obtain the variational formu-
lation of the problem, or even to find one. The variational formulation of the representer
technique requires several steps, as shown below.

e The description of the penalty function in terms of residuals (constraints) function
is given by:

Jhuv,q = 23: [Wf/ontA[fk(x,y,t)]QdQ+I/Vf/9[ik(m,y)]2d§2]

k=1
+§; [W,g /OTdt/OX[bl(x,t)Fdx] +wmz]i:1»s; (2)

where k = 1,2,3 = u,v,¢, and f* represents the Eqs. (1a) (1b) (1c). The second
and third terms are the initial and boundary condition constraints, and the last term
is the square difference between the model and observations.
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e The equation for the Lagrange multipliers \* are obtained deriving the Euler-Lagrange
equations for extremum of the penalty (constraints):

3 A\ .
N M .
O OAY O\
- - q) —

o g(ax + o —i—rq/\) S (3¢)
M

S =—w Z [cj(a;m, Yms tm) - dm] 5(33 - xm)(s(y - ym>5(t - tm) <3d)
m=1

with null final conditions (\* = 0 for ¢t = T'), and the same boundary conditions as
the forward problem.

e Representer equations is obtained firstly solving the associated Green function o :
dal oo,

— 8?+fa”m—H8—;n+ruafn:O, (4a)
ool oo

— agn—fa;j@—Hag;n—krvaﬁ,L:O, (4b)
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The above system is solved with the same final and boundary conditions as adopted
to the Lagrange multipliers \*.

e Representer solution ¥, is identified from the Green funcion computed before:

or ord,

m v U ul—1 _u
ot +f7"m+gw+7“u7“m— (WH am, (5a)
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with the following initial and boundary conditions:
(X, Y,0) = Wf] " ag, (2,9,0) (IC) (
k(x4 X, y,t) =8 (z,y,1) (6b
(e y £Y ) = (2,y.0) (k= u.q)
e (x,0,t) = HWZ]Lal, (,0,1) (
e (z,Y,t) = HWP] al, (z,Y,1) . (6e
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e In the representer approach, the minimum of the functional is determined by: @(w, y,t) =
O (z,y,t) + >, Bmrm(x,y,t). To complete the solution, the expansion coefficients
Bm are computed by solving the linear system:

M
Rw™1) 8= |ok - ape] (7)
m=1
where ® = [u v ¢|7, B=1[B81 ... Bu|’, R is the covariance matrix of measurement

error, and I is the identity matrix.

2.2 Artificial Neural Networking (ANN)

Artificial Neural Networks (ANN) became important tools for information process-
ing [9]. Much research has been conducted in pursuing new neural network models and
adapting the existing ones to solve real world problems. ANN are made of arrangements
of processing elements called neurons. The artificial neuron model basically consists of a
linear combiner followed by an activation function. Connected processing units form the
ANN. They are characterized by: very simple neuron-like processing elements; weighted
connections between the processing elements; highly parallel processing and distributed
control; automatic learning of internal representations.

A feedforward network is a non-linear mapping to compute the output vector from an
input vector. The connections among the several neurons (1b) have associated weights that
are adjusted during the learning process, thus changing the performance of the network.
Two distinct phases can be devised while using ANN: the training phase (learning process)
and the run phase (activation of the network). The training phase consists of adjusting
the weights for the best performance of the network in establishing the mapping of many
input/output vector pairs. Once trained, the weights are fixed and the network can be
presented to new inputs for which it calculates the corresponding outputs, based on what
it has learned.

3 Results

Data assimilation is an essential step for operational forecasting systems by means
of a weighted combination between observational data and data from a mathematical
model. Artificial neural networks (ANN) have been proposed as a technique for data
assimilation ( [15], [5], [10], [3]). The Figure la) presents two steps of an ANN. The first
one, training process, where the ANN learns to emulate the Representer Method. After
that, the analysis can be computed. The method is presented with applications on shallow
water model 2D (Equation 1). The shallow water equations were integrated at 60 time
steps.The training set for the ANN use the first 160 time steps. The remaining time steps
were used for the generalization. The performance of the ANN is to be compared with
Representer Method (kind Variational Method). The ¢ variable was initialized with sin
function, and variables was © = v = 0. Figure 3 presents a comparison between the
Representer Method (red curve) and the Artificial Neural Network (green curve) and the
temporal evolution of point to variables u and q. In this experiment, the ANN was able
to follow the dynamics of shallow water flow, showing a good performance of the data
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Figure 1: Computing analysis by an Artificial Neural Network. (a) training stage (emu-
lating representer method); (b): Analysis calculated.

Table 1: Parameters ANN.

forcing i.c.
u v q u v q
n 0,005 | 0,003 | 0,005 | 0,009 | 0,009 | 0,009
nhl | 35 35 35 45 40 40

assimilation process during all time-integration period. Figure 4 present the error. Error
is the absolute difference between estimated by ANN and true reference, we have the
errors to g, u and v variable at time ¢ = 39, respectively. of the entire field for all model
variables. The Table 1 presents the ANN parameters used: learning rate (1) and number
of neurons in the hidden layer(nhl), the parameters were determined empirically. This
paper estimated the initial conditions, forcings and boundary condition. Developed up a
network for each estimated parameter. The Figure 2 presents the model of the integration
area, the green dots represent the assimilated observations.

u, v variable q variable

1 1
10 11 12 13 14 15 16 17 18 19 20 10 11 12 13 14 15 16 17 18 19 20

Figure 2: Interpolated observations at the grid point: a) u and v variable; b) q variable.

4 Conclusion

Numerical prediction system is an initial value problem. A better representation of
the initial conditial will produce a better forecast. Many methods have been developed
for data assimilation. These methods have different strategies to combine the forecasting
(background) and observations. They differ in the quality of its matching with the real
dynamics and the computational cost. In this work, two techniques for data assimilation
were compared. These methods were tested to shallow water 2D model. These methods
were tested on the shallow water 2D modeling problem. A model commonly used to test
new schemes in meteorology and oceanography. According to the results obtained in this
work, ANN is a competitive method for data assimilation.
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Figure 3: Temporal evolution of point v(6,6) and q(6,6), respectively. Representer Method
(red curve), ANN (green curve), True (blue curve).
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Figure 4: Data assimilation error. Variables: (a) ¢, (b) u and (c) v.
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