Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

# Controle Vetorial da Máquina de Indução por Modos Deslizantes com Função Suave

Carlos Matheus Rodrigues de Oliveira<sup>1</sup> Manoel Luis de Aguiar<sup>2</sup> William Cesar Andrade Pereira<sup>3</sup> Paulo Roberto Ubaldo Guazzelli<sup>4</sup> Marcelo Patrício Santana<sup>5</sup> Geyverson Teixeira de Paula<sup>6</sup> Thales Eugênio Portes de Almeida<sup>7</sup>

Escola de Engenharia de São Carlos, USP, São Carlos, SP

**Resumo**. Neste trabalho é proposto um estudo sobre o controle vetorial aplicado ao Motor de Indução Trifásico (MIT), utilizando a estratégia de controle Indirect Field Oriented Control (IFOC). Utiliza-se na topologia o controle por modos deslizantes com o método de controle equivalente, visando sobretudo ampla faixa de operação robusta a distúrbios de carga com o mínimo de *chattering*. Para tanto, propõe-se uma abordagem utilizando a função tangente hiperbólica no termo chaveado dos controladores de velocidade, fluxo e correntes. Afim de testar a topologia de controle proposta, simulações em diferentes condições de operação são realizadas utilizando o *software* MATLAB.

Palavras-chave. Controlador por Modos Deslizantes, Motor de Indução, IFOC.

## 1 Introdução

O Motor de Indução Trifásico (MIT) é amplamente utilizado em ambientes industriais, devido sua simples construção mecânica e baixo custo de manutenção se comparado ao Motor de Corrente Contínua (MCC) [6]. Entretanto o MIT é um sistema não linear de ordem superior com incertezas em seu modelo, requerendo controladores que forneçam o desempenho requerido, dentre eles podem ser citados: técnicas de controle adaptativo, Fuzzy, Neuro-Fuzzy, entre outros [7,8].

<sup>&</sup>lt;sup>1</sup>carlosmro@usp.br

<sup>&</sup>lt;sup>2</sup>aguiar@sc.usp.br

<sup>&</sup>lt;sup>3</sup>william.andrade@usp.br

<sup>&</sup>lt;sup>4</sup>paulo.ubaldo@usp.br

<sup>&</sup>lt;sup>5</sup>marceloengenheiro@usp.br

<sup>&</sup>lt;sup>6</sup>geyverson.paula@usp.br

<sup>&</sup>lt;sup>7</sup>thales.eugenio.almeida@usp.br

 $\mathbf{2}$ 

Outra opção esta no uso do Controlador por Modos Deslizantes (CMD), fornecendo um controle descontínuo de alto ganho derivado do controle por estrutura variável. O CMD apresenta elevada robustez e rápida resposta dinâmica, sendo muito eficiente no controle de sistemas incertos, como o MIT. Porém, este tipo controlador, devido as suas características sofre um efeito conhecido como *chaterring*, que é uma oscilação indesejada de alta frequência ligada principalmente ao uso da função de chaveamento sinal [5].

Afim de alcançar alto desempenho no controle vetorial do MIT e minimizar problemas de *chattering*, é proposto a inserção da função tangente hiperbólica no CMD pelo método de controle equivalente no IFOC. Para analisar a versatilidade deste controlador, é utilizado a estrutura de controle em quatro varáveis: velocidade, fluxo do rotor, correntes de eixo direto e em quadratura do estator.

#### 2 Modelagem e Controle do Motor de Indução

O modelo matemático do MIT pode ser expresso em um referencial arbitrário, contudo usualmente no controle em campo orientado utiliza-se o fluxo do estator ou rotor como referencial único. Dessa forma, na estratégia de controle FOC clássica, orientada no fluxo do rotor, pode se ter o modelo expresso como [6]:

$$\frac{d}{dt}i_{ds} = \frac{u_{ds}}{\sigma L_s} - \frac{R_s}{\sigma L_s}i_{ds} + \omega_{m2}i_{qs} - \frac{(1-\sigma)}{\sigma}\frac{d}{dt}i_{m2}$$

$$\frac{d}{dt}i_{qs} = \frac{u_{ds}}{\sigma L_s} - \frac{R_s}{\sigma L_s}i_{qs} - \omega_{m2}i_{ds} + \frac{(1-\sigma)}{\sigma}\omega_{m2}i_{m2}$$

$$\frac{d}{dt}i_{m2} = -\frac{R_r}{L_r}[i_{m2} - i_{ds}]$$

$$J\frac{d}{dt}(\omega_{mec}) = T_{el} - F\omega_{mec} - T_l$$

$$T_{el} = K_{\omega}i_{m2}i_{qs}$$
(1)

Sendo que  $u_{ds}$  e  $u_{qs}$  são as tensões do estator e rotor,  $i_{ds}$  e  $i_{qs}$  são as correntes do estator e rotor,  $R_s$  e  $R_r$  são as resistências do estator e rotor,  $L_s$  e  $L_r$  são as resistências do estator e rotor,  $i_{m2}$  é a corrente de magnetização,  $\omega_{m2}$  é a velocidade angular síncrona do fluxo do rotor,  $\omega_{mec}$  é a velocidade mecânica do rotor,  $T_{el}$  é o torque eletromagnético, F é o coeficiente de atrito,  $T_l$  é o torque de carga aplicado ao eixo do rotor,  $n_{pp}$  é o número de pares de polo,  $L_H$  é a indutância principal,  $\sigma$  é o coeficiente de dispersão global  $\sigma = \left(1 - \frac{L_H^2}{L_s L_r}\right)$  e  $K_{\omega}$  é a constante de torque  $K_{\omega} = \frac{3}{2}n_{pp}(1-\sigma)L_s$ , respectivamente.

A posição do fluxo do rotor ( $\rho$ ), necessário para as transformações de coordenadas utilizadas na estratégia IFOC, é obtida pela integral de  $\omega_{m2}$ , tal como segue em (2) [6]. A Figura 1 ilustra o diagrama de blocos da estratégia de controle IFOC explicitada.

$$\omega_{m2} = n_{pp}\omega_{mec} + \frac{1}{T_2} \frac{i_{qs}}{i_{m2}}$$

$$\rho = \int \omega_{m2} dt$$
(2)



Figura 1: Diagrama de blocos da estratégia de controle IFOC utilizando o CMD.

## 3 Controle por Modos Deslizantes

O projeto do controlador por modos deslizantes é dividido em duas partes. A primeira refere-se a atrair o estado do sistema para a superfície de deslizamento e a segunda representa a dinâmica na superfície. A dinâmica na superfície de deslizamento esta relacionada principalmente a robustez relacionada a incertezas paramétricas e pertubações [1].

Considerando uma classe de problemas não lineares descrito por (3), é possível analisar o sistema pelo método de controle equivalente de forma genérica e realizar uma analogia ao modelo dado em (1) conforme proposto por [1]. Neste método é necessário encontrar uma ação de controle  $U_c(x)$  que garanta a convergência do sistema para a superfície de deslizamento S(x) = 0 [5].

$$\begin{aligned} \dot{x} &= f(x) + g(x)U_c \\ y &= h(x) \end{aligned} \tag{3}$$

sendo que  $x(t) \in \mathbb{R}^n$  é vetor de estado,  $U_c(t) \in \mathbb{R}^m$  é a ação de controle e  $y(t) \in \mathbb{R}^p$  é a saída do sistema.

Pelo método do controle equivalente é necessário determinar todos os possíveis valores de  $U_c$  que satisfação a condição de convergência dada por S(x) = 0 em conjunto com  $\dot{S}(x) = 0$ . Dentre os possíveis valores para  $U_c$  será explicitada a estrutura utilizada por [1]:

$$Uc = U_{eau} + U_n \tag{4}$$

sendo que  $U_{equ}$  é função de controle denotada como controle equivalente e garante que a resposta permaneça na superfície de deslizamento. O termo  $U_n$  é adicionado afim de garantir a atratividade a superfície escolhida. Para que sejam satisfeitas as condições de convergência do sistema ao regime de modos deslizantes é necessário definir uma superfície de deslizamento S(x), sendo que a mais utilizada é expressa por [4,5]:

3

4

$$S(t) = \left(\lambda + \frac{d}{dt}\right)^{n-1} e(t) \tag{5}$$

sendo n o grau de liberdade,  $\lambda$  uma constante positiva e e(t) o erro da variável a ser controlada.

Afim de provar a convergência de um sistema genérico definido como (3), utilizando a ação de controle denotada em (4), é possível utilizar uma função candidata de Lyapunov, tal como a de energia que é expressa por [4]:

$$V = \frac{1}{2}S^2 \tag{6}$$

A condição de convergência global para uma estabilidade assintótica da superfície escolhida no ponto de equilíbrio pode ser dada como [3]:

$$\dot{V} = S\dot{S} < 0 \quad para \quad S \neq 0 \tag{7}$$

$$\lim_{S \to \infty} V = \infty \tag{8}$$

As duas condições necessitam ser satisfeitas, contudo na prática a análise se restringe à apenas (7), já que (8) é claramente satisfeita. Conforme descrito por [1], considerando (3) e (4) é possível obter (9) e restringir a análise a  $U_n$ , tendo em vista que o termo  $U_{equ}$ pode ser entendido como o valor médio do termo chaveado  $U_n$  dado por  $[U_{max} U_{min}]$ .

$$S(x)\dot{S}(x) = S(x)\frac{\partial S}{\partial x}g(x)U_n < 0$$
(9)

No método algumas estruturas são usais e ainda podem garantir a convergência para S(x) = 0, como a função sinal dada em (10).

$$U_n = Ksgn(S(x)) \tag{10}$$

Substituindo (10) em (9), obtém-se:

$$S(x)(\dot{S})(x) = \frac{\partial S}{\partial x}g(x)K|S(x)| < 0$$
(11)

Pelo classe de sistema considerado neste trabalho o termo  $\frac{\partial S}{\partial x}g(x)$  é negativo, ao passo que K é escolhido positivo para satisfazer a atratividade e condições de estabilidade [1].

A função sinal esta ligada ao problema do *chattering*, principalmente em situações práticas que existem atrasos de chaveamento [5]. Além disso, em aplicações com inversor de frequência pode se ter uma frequência de chaveamento variável, ocasionando o aumento de perdas de chaveamento. Desta forma é proposto o uso da função tangente hiperbólica no termo  $U_n$ , visto que a mesma introduz uma região linear com característica suave próximo a região de saturação. Por meio de duas constantes  $K_1 \in K_2$  é possível estabelecer o limite máximo e inclinação da função respectivamente.

$$U_n = K_1 tanh\left(\frac{S(x)}{K_2}\right) \tag{12}$$

5

## 4 Topologia de Controle IFOC-CMD

Conforme ilustrado na Figura 1 são selecionadas as quatro superfícies denotadas em (13), sendo as superfícies de: velocidade mecânica  $S_{\omega_{mec}}$ , fluxo do rotor  $S_{i_{m2}}$ , correntes de eixo direto e em quadratura do estator  $S_{i_{ds}}$  e  $S_{i_{qs}}$ , respectivamente.

$$S_{i_{m2}} = i_{m2_{ref}} - i_{m2}$$

$$S_{i_{ds}} = i_{d1_{ref}} - i_{d1}$$

$$S_{\omega_{mec}} = \omega_{mec_{ref}} - \omega_{mec}$$

$$S_{i_{qs}} = i_{qs_{ref}} - i_{qs}$$
(13)

Por meio de (1) pode-se encontrar o termo equivalente do controlador de cada superfície. Já o termo  $U_n$  será dado por (12) em todas as superfícies. Desta forma é possível compor as superfícies como:

Superfície  $i_{m2}$ :

$$i_{ds_{ref}} = i_{ds_{equ}} + i_{ds_n}$$

$$\dot{S}_{im_2} = 0 \Rightarrow i_{ds_{equ}} = T_2 \frac{d}{dt} i_{m_{2_{ref}}} + i_{m_2}$$

$$i_{ds_n} = K_{1i_{qs}} tanh\left(\frac{S(x)}{K_{2i_{qs}}}\right)$$
(14)

Superfície  $i_{ds}$ :

$$u_{ds_{ref}} = u_{ds_{equ}} + u_{ds_n}$$

$$\dot{S}_{i_{ds}} = 0 \Rightarrow u_{ds_{equ}} = \sigma L_1 \left( \frac{d}{dt} i_{ds_{ref}} - \omega_{m_2} i_{qs} \right) + L_1 \left( \frac{i_{ds}}{T_1} + (1 - \sigma) \frac{d}{dt} i_{m2} \right) \qquad (15)$$

$$u_{ds_n} = K_{1i_{ds}} tanh \left( \frac{S(x)}{K_{2i_{ds}}} \right)$$

Superfície  $\omega_{mec}$ :

$$i_{qs_{ref}} = i_{qs_{equ}} + i_{qs_n}$$

$$\dot{S}_{\omega_{mec}} = 0 \Rightarrow i_{qs_{equ}} = \frac{J}{K_w i_{m2}} \left( \frac{d}{dt} \omega_{mec_{ref}} - \frac{d}{dt} \omega_{mec} \right) + \frac{1}{K_w i_{m2}} \left( K_w i_{m2} i_{qs} \right)$$

$$i_{qs_n} = K_{1\omega_{mec}} tanh \left( \frac{S(x)}{K_{2\omega_{mec}}} \right)$$
(16)

Superfície  $i_{qs}$ :

$$u_{qs_{ref}} = u_{qs_{equ}} + u_{qs_n}$$

$$\dot{S}_{i_{qs}} = 0 \Rightarrow u_{qs_{equ}} = \sigma L_1 \left( \frac{d}{dt} i_{qs_{ref}} + \omega_{m_2} i_{ds} \right) + L_1 \left( \frac{i_{qs}}{T_1} + (\sigma - 1)\omega_{m_2} im_2 \right) \qquad (17)$$

$$u_{qs_n} = K_{1i_{qs}} tanh \left( \frac{S(x)}{K_{2i_{qs}}} \right)$$

6

## 5 Resultados

Os resultados de simulação são apresentados utilizando os parâmetros dos controladores na Tabela 1a e ainda os parâmetros do motor dados na Tabela 1b. A frequência de chaveamento é definida para 8kHz e a frequência de controle em 20kHz. Na Figura 2 é apresentada os resultados simulados com corrente de magnetização constante em 1.09 A, ilustrando as respostas de Tl,  $i_{ds}$ ,  $i_{qs}$ ,  $\omega_{mec}$  e  $i_{m2}$ . A Figura 2a denota as respostas em diferentes condições de operação, com a velocidade variando em -1500, 3000, 0, 1500 e 3000 RPM. Outra caso é apresentado na Figura 2b, considerando a velocidade constante em 2000 RPM com variação do torque de carga em 1.5 N.m.



Figura 2: Resultado da Simulação (a) com diferentes velocidades de referência, (b) com velocidade constante em 2000 RPM e com variação do torque de carga.

Como pode ser visto em ambos os casos,  $i_{m2}$  possui uma resposta rápida e permanece inalterada. Embora exista algumas oscilações (*chattering*) nas correntes  $i_{ds}$  e  $i_{qs}$ , a velocidade e o fluxo não são afetados. Na Figura 2a é possível notar a capacidade de operar em diferentes pontos de operação com uma resposta rápida (característica do CMD) e sem sobressinal. Já na Figura 2b tem-se demonstrado a robustez perante a variação de carga.

## 6 Conclusões

Este trabalho abordou o controle vetorial para ampla faixa de operação. Para tanto, utilizou-se a estratégia de controle IFOC em conjunto com a teoria de controle de modos deslizantes pelo método de controle equivalente. Os resultados em simulações comprovaram o bom desempenho do sistema proposto, sendo condizentes com os resultados encontrados na literatura, tal como em [1, 2], sendo que os mesmos abordaram o uso de outra função de chaveamento.

A utilização da função tangente hiperbólica no termo chaveado do controlador mostrou versatilidade, tendo em vista sua implementação em todos os controladores da topologia

proposta. Vale ressaltar a eficácia da mesma se relacionada ao problema do *chattering*, mostrando-se atrativa para o controle de alto desempenho do MIT.

(b) Parâmetros do Motor de Indução

|                                  |                                                  |                                     | Parâmetro                                                 | Valor                   | Unidade       |
|----------------------------------|--------------------------------------------------|-------------------------------------|-----------------------------------------------------------|-------------------------|---------------|
| (a) Parâmetros dos Controladores |                                                  |                                     | Power                                                     | 1                       | Cv            |
| Superfície                       | Parâmetro                                        | Parâmetro                           | $R_1$                                                     | 7.5022                  | Ω             |
| $i_{m2}$                         | $K_{1i_{qs}} = 2.7$                              | $K_{2i_{qs}} = 0.1$                 | $\begin{bmatrix} \kappa_2 \\ (L_1 \in L_2) \end{bmatrix}$ | 4.8319<br>718.5         | $_{ m mH}$    |
| $u_{ds}$ $\omega_{mec}$          | $K_{1i_{ds}} = 311$<br>$K_{1\omega_{max}} = 2.7$ | $K_{2i_{ds}} = 1$ $K_{2i_{ds}} = 3$ | $L_h$                                                     | 694.1                   | $\mathrm{mH}$ |
| $i_{qs}$                         | $K_{1i_{qs}} = 311$                              | $K_{2i_{qs}} = 1$                   | $egin{array}{c c} n_{pp} \\ J \end{array}$                | $1 \\ 6.7608 \ 10^{-4}$ | $\rm Kg.m^2$  |
|                                  |                                                  |                                     | F                                                         | $3.4045 \ 10^{-4}$      | N.m.s         |
|                                  |                                                  |                                     | Tensão                                                    | 220                     | V             |

## Referências

- M. O. Mahmoudi, N. Madani, M. F. Benkhoris e F. Boudjema, Cascade sliding mode control of a field oriented induction machine drive, The European Physical Journal Applied Physics, 217–225, (1999).
- [2] F. Mehazzem, A. Reama, Y. Hamam, H. Benalla, Cascade sliding mode control of a field oriented induction motors with varying parameters, 5th International Multi-Conference on Systems, Signals and Devices, (2008).
- [3] Y. Shtessel, C. Edwards, L. Fridman e A. Levant, Sliding Mode Control and Observation, Hardcover, (2011).
- [4] J. J. E. Slotine e W. Li, Applied Nonlinear Control, Prentice Hall, (1991).
- [5] V. Utkin, Sliding mode control design principles and applications to electric drives, IEEE Transactions on Industrial Eletronics, vol. 40, 23–36 (1993).
- [6] P. Vas, Vector control of AC machines, Clarendon Press, vol. 1, (1990).
- [7] P. Vas, Artificial Intelligence Based Electrical Machines and Drives: Fuzzy, Neural, Fuzzy-neural and Genetic Algorithm based technique, Oxford University Press, (1999).
- [8] R. J. Wai e K. H. Su, Adaptive enchanced fuzzy sliding-mode control for electrical servo drive, IEEE Transactions on Industrial Electronics, vol. 53, 569–580 (2006).