Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Identificação dos Parâmetros e Simulação de um Quadrotor Construído por meio de Prototipação Rápida

Eduardo Sacogne Fraccaroli¹ Instituto de Ciências Matemáticas e de Computação, USP, São Carlos, SP Roberto Santos Inoue² Departamento de Engenharia Elétrica, UFSCAR, São Carlos, SP Isabella Cristina Souza Faria³ Departamento de Engenharia Mecânica, UFSCAR, São Carlos, SP Roseli Aparecida Francelin Romero⁴ Instituto de Ciências Matemáticas e de Computação, USP, São Carlos, SP

Resumo. O quadrotor LARVANTAR é um projeto do Instituto de Ciências Matemáticas e de Computação da USP de São Calos para o desenvolvimento de uma aeronave através de prototipagem rápida que realize o rastreamento de veículos terrestres, capture imagens aéreas e faça a coleta de dados de uma plantação de laranjas. Atualmente essa aeronave é controlada por um piloto automático Naza V2 desenvolvido pela empresa DJI. Mas pretende-se substituir esse controlador por um piloto automático próprio. Para isso, nesse trabalho foram identificados os parâmetros do modelo dinâmico do quadrotor com auxílio de um *software* CAD. Um controlador PD foi projetado para o problema de acompanhamento de trajetória da aeronave. E resultados simulados do voo do veículo foram obtidos para demonstrar o desempenho do controle que será embarcado no quadrotor.

Palavras-chave. Quadrotor, VANT, controle PD, controle de quadrotor, desenvolvimento de quadrotor.

1 Introdução

Veículos aéreos não tripulados (VANT), vem sendo utilizados por diversos setores da economia, como as áreas agrícola, industrial, comercial e predial. Isto ocorreu principalmente devido a crescente disponibilidade de recursos computacionais de alto desempenho, avanços em tecnologias de transmissão de dados e de posicionamento global. O que permitiu o desenvolvimento de aeronaves mais confiáveis e versáteis e a diminuição dos custos de construção desses veículos, [11] e [13].

 $^{^{1}}eduardo. fraccaroli@gmail.com\\$

²rsinoue@ufscar.br

³isamoreno2009@gmail.com

⁴rafrance@icmc.usp.br

 $\mathbf{2}$

Um dos principais tipos de VANTs são os quadrotores. Esse tipo de aeronave vem sendo utilizado para navegação autônoma visual em ambientes não estruturados, [1], vigilância autônoma, [6], assistente em esporte, [8], enxames de robôs, [4] e [12], em impressão 3D aérea, [9], etc. Contudo a construção desse tipo de veículo não é tarefa fácil, pois envolve o projeto e desenvolvimento da estrutura mecânica, eletrônica, sistema embarcado e sistema de controle. Por exemplo, em [4] foi desenvolvido um quadrotor de baixo custo para realização de experimentos de enxame de robôs em ambiente interno, nesse trabalho foi utilizado um piloto automático de código aberto o ArdupilotMega 2.0 e o sistema de captura de movimento da Vicon para realizar a realimentação do sistema de controle. Já, outros trabalhos focam no desenvolvimento de controladores PD para o problema de acompanhamento de trajetória desse tipo de veículo, [10], [5], [14] e [2].

Assim, nesse artigo é apresentado o desenvolvimento de um quadrotor constituído por hastes de alumínio e peças prototipadas por uma impressora 3D de baixo custo. A identificação dos parâmetros do modelo dinâmico dessa aeronave foram obtidos através da utilização de um *software* CAD, [7]. O projeto de controlador PD para o problema de acompanhamento de trajetória do quadrotor foi desenvolvido e a simulação do voo do veículo foi realizada para demonstrar o desempenho do controle utilizado.

2 Quadrotor LARVANTAR

Este quadrotor foi projetado e desenvolvido como plataforma padrão para ser utilizado em diversas aplicações, dentre elas: imageamento aéreo, coleta de dados de uma plantação de laranjas e rastreamento de veículos. Foi utilizado uma impressora 3D, para prototipar em plástico ABS suas peças estruturais.

Figura 1: Modelo 3D do quadrotor 1(a), quadrotor em voo 1(b) e imagem aérea do Campus 1 da USP de São Carlos 1(c).

O quadrotor, Figura 1(b), possui um piloto automático que o controla por meio da fusão dos dados dos sensores (IMU e GPS). Para realizar a captura de imagens aérea, Figura 1(c), foi acoplado uma câmera GoPro Hero 3.

Atualmente esse quadrotor possui dois modos de voo: voo autônomo ou voo rádio controlado. No voo autônomo utilizamos um *tablet* para controle, onde via *bluetooth* envia comandos à uma estação situada em terra, que por sua vez envia os comandos para o quadrotor. No voo rádio controlado utilizamos um controle com 6 canais para controlar

3

os movimentos do quadrotor.

A eletrônica é composta de quatro módulos responsáveis pelo controle eletrônico de velocidade, cada um com a corrente máxima de operação de 30A; quatro motores *brusheless* de 750kv de potência; duas hélices que giram no sentido horário e duas hélices que giram no sentido anti-horário; uma bateria LIPO 3S com 4200mAh e 60C; um módulo Naza V2 (MC + PMU + LED) e um GPS.

O chassi do quadrotor possui quatro tubos quadrados em alumínio (hastes) e o restante são peças prototipadas. O projeto das peças prototipadas foi desenvolvido para atender as necessidades das aplicações onde será inserido o quadrotor. Dentre as peças impressas o corpo é a peça principal onde as quatro hastes são fixadas. O suporte do motor foi desenhado para ser vestido na haste, propiciando assim nenhuma folga e melhor fixação. O protetor de hélice foi desenhado para ser inserido sem folga dentro da haste e aparafusado. O trem de pouso foi desenhado para deixar um vão livre entre o chão e o corpo do quadrotor. A caixa de proteção da eletrônica foi desenhada para encapsular o módulo Naza V2 deixando suas portas livres para conexão dos cabos de alimentação e cabos de dados. O suporte da GoPro foi adaptado para se aquedar ao corpo do quadrotor. Optou-se por utilizar peças prototipadas por três motivos: custo de fabricação reduzido; facilidade de reposição das peças; e redução do tempo do ciclo de desenvolvimento do projeto.

3 Obtenção dos parâmetros

A obtenção dos parâmetros do modelo dinâmico do quadrotor LAVANTAR consistiu na representação da aeronave em *software* CAD, Figura 1(a). Cada peça do veículo foi desenhada separadamente e com especificação do material. Em seguida, foi feita a montagem e obteve-se as propriedades do conjunto, como a massa m, os momentos de inércia com relação aos três eixos I_{xx} , I_{yy} e I_{zz} e a distância dos rotores até o centro de massa do veículo l. Os dados obtidos do quadrotor são mostrados na Figura 2(a) e os valores de ganho do controlador PD de acordo com [10], são apresentados na Figura 2(b).

			Parâmetro	Valor
Parâmetro	Valor	Unidade	K_{zd}	2.5
		(2	$K_{\phi d}$	1.75
g	9.81	m/s^2	$K_{\theta d}^{\phi a}$	1.75
m	1.221	Kg	$K_{\psi d}$	1.75
I_{xx}	3.16718^{-3}	$\mathrm{Kg}m^2$	K_{zp}	1.5
т	c 1 c 4 c c - 3	122	$K_{\phi p}$	6
I_{yy}	0.10400	κgm	K_{0}^{+F}	6
I_{zz}	3.23107^{-3}	$\mathrm{Kg}m^2$	$K_{\psi p}$	6
(a)			(b)	

Figura 2: Parâmetro identificados através do modelo 3D 1(a) e parâmetros de ganho do controlador PD 2(b).

4

4 Modelagem e controle do quadrotor

O quadrotor é considerado como um corpo rígido e então, por meio das equações de Newton-Euler, pode-se descrever sua dinâmica, [10]. A equação para as acelerações angulares é dada por:

$$\ddot{n} = \begin{bmatrix} \phi \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} = J^{-1}(\tau_B - C\dot{n}), \tag{1}$$

sendo $\ddot{\phi}_d \in \ddot{\theta}_d \in \ddot{\psi}_d$ as acelerações angulares desejadas de rolagem, arfagem e guinada, J a matriz Jacobina, $\tau_B = [\tau_{\phi} \ \tau_{\theta} \ \tau_{\psi}]^T$ o vetor de torque total, τ_{ϕ} o torque gerado pela rotação em torno do eixo x, τ_{θ} o torque gerado pela rotação em torno do eixo y, τ_{ψ} o torque gerado pela rotação em torno do eixo $z \in C$ a matriz de Coriolis. A equação para as acelerações lineares é dada por:

$$\ddot{s} = \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} - g \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \frac{T}{m} \begin{bmatrix} \cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi \\ \sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi \\ \cos\theta\cos\phi \end{bmatrix} - \frac{1}{m} \begin{bmatrix} A_x & 0 & 0 \\ 0 & A_y & 0 \\ 0 & 0 & A_z \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix}, \quad (2)$$

sendo \ddot{x} , \ddot{y} , e \ddot{z} as acelerações lineares nos eixos x, y, e z, respectivamente, g a constante gravitacional, T o impulso total gerado pelas forças combinadas dos rotores, e A_x , A_y e A_z os coeficientes da força do vento nas correspondentes direções do referencial inercial,.

As equações geradas pelo controlador PD são dadas por:

$$T = (g + (K_{zd})(\dot{z}_d - \dot{z}) + (K_{zp})(z_d - z))\frac{m}{(\cos\phi\cos\theta)},$$

$$\tau_{\phi} = (K_{\phi d}(\dot{\phi}_d - \dot{\phi}) + K_{\phi p}(\phi_d - \phi))I_{xx},$$

$$\tau_{\theta} = (K_{\theta d}(\dot{\theta}_d - \dot{\theta}) + K_{\theta p}(\theta_d - \theta))I_{yy},$$

$$\tau_{\psi} = (K_{\psi d}(\dot{\psi}_d - \dot{\psi}) + K_{\psi p}(\psi_d - \psi))I_{zz},$$

(3)

sendo K_{zd} , $K_{\phi d}$, $K_{\theta d}$ e $K_{\psi d}$ os ganhos derivativos, K_{zp} , $K_{\phi p}$, $K_{\theta p}$ e $K_{\psi p}$ os ganhos proporcionais; \dot{z}_d a velocidade desejada no eixo z, z_d a posição desejada no eixo z; ϕ_d , θ_d e ψ_d os ângulos desejados de rolagem, arfagem e guinada, e $\dot{\phi}_d$ e $\dot{\theta}_d$ e $\dot{\psi}_d$ as velocidades angulares desejadas de rolagem, arfagem e guinada.

A trajetória desejada x_d , $y_d \in z_d$ é obtida através de um polinômio de quinto grau, [3]. E os ângulos desejados por:

$$\phi_d = as\left(\frac{d_x sin(\psi) - d_y cos(\psi)}{d_x^2 + d_y^2 + (d_z + g)^2}\right),$$

$$\theta_d = at\left(\frac{d_x cos(\psi) + d_y sin(\psi)}{d_z + g}\right),$$
(4)

sendo

$$d_{x} = K_{xp}(x_{d} - x) + K_{xd}(\dot{x}_{d} - \dot{x}) + K_{xdd}(\ddot{x}_{d} - \ddot{x}),$$

$$d_{y} = K_{yp}(y_{d} - y) + K_{yd}(\dot{y}_{d} - \dot{y}) + K_{ydd}(\ddot{y}_{d} - \ddot{y}),$$

$$d_{z} = K_{zp}(z_{d} - z) + K_{zd}(\dot{z}_{d} - \dot{z}) + K_{zdd}(\ddot{z}_{d} - \ddot{z}).$$
(5)

5 Simulação e Análise dos resultados

A simulação do controle do quadrotor foi implementada em MATLAB[®], conforme ilustrado pelo diagrama da Figura 3. Primeiramente foi gerada uma trajetória desejada para o quadrotor através de um polinômio do quinto grau, que irá traçar uma reta entre a posição original do quadrotor e a posição final desejada do quadrotor.

Essa trajetória é então comparada com a posição do quadrotor ao longo do tempo. Um erro entre a trajetória desejada e a posição atual do quadrotor é calculado. Esse erro é então utilizado para o cálculo do controlador PD, que fornece o impulso total e o torque total para o modelo do quadrotor. E através de uma dupla integração, obtém-se o valor de posição e atitude do quadrotor.

Figura 3: Diagrama de blocos do sistema de controle do quadrotor LARVANTAR.

Para simulação foram utilizados os valores dos parâmetros baseados em [10] e nos momentos de inercia do quadrotor real (Figura 2(a)).

As figuras 4(a), 4(b) e 4(c) mostram as posições lineares e as figuras 5(a), 5(b) e 5(c) mostram as posições angulares resultantes da simulação.

Figura 4: Posições lineares de de rolagem 4(a), arfagem 4(b) e guinada 4(c).

A simulação mostrou que a modelagem do quadrotor foi satisfatória. Além disso, o controlador PD funcionou bem, porém, houve uma variação dos valores de $x \in y$ durante o

Figura 5: Posições angulares de rolagem 5(a), arfagem 5(b) e guinada 5(c).

processo de estabilização. Houveram também desvios nos valores dos ângulos de rolagem (ϕ) , arfagem (θ) e guinada (ψ) . O desvio no ângulo (ψ) é gerado para compensar a força de arrasto gerada pela aceleração do veículo.

6 Conclusão

No presente trabalho foi proposto o controle do quadrotor LARVANTAR, construído com auxílio de uma impressora 3D, utilizando um controlador PD. Os parâmetros modelo matemático da dinâmica do quadrotor foram identificados com auxílio de *software* CAD. O modelo foi avaliado por meio de simulação de voo, implementado utilizando o MATLAB[®]. A simulação mostrou que o modelo matemático apresentado foi capaz de modelar de forma realista a posição e atitude do quadrotor. Os resultados das simulações mostraram também que o controlador PD foi eficiente na estabilização do quadrotor à altitude e atitude desejada. Como trabalho futuro, iremos implementar o sistema de controle de estabilidade no protótipo construído e comparar com resultados obtidos pela simulação.

Agradecimentos

Os autores gostariam de agradecer a FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), ao CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) e a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) pelos auxílios financeiros propiciados.

Referências

[1] C. Bills, J. Chen and A. Saxena, Autonomous MAV flight in indoor environments using single image perspective cues, IEEE International Conference on Robotics and Automation, Shangai, China, (2011).

- [2] S. Bouabdallah, A. Noth and R. Siegwart, PID vs LQ control techniques applied to an indoor micro quadrotor, IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, (2004).
- [3] J. J. Craig, Introduction to Robotics: Mechanics and Control, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, Ed. 2, ISBN: 0201095289, (1989).
- [4] E. Davis, B. E. Nizette and C. Yu, Development of a Low Cost Quadrotor Platform for Swarm Experiments, Chinese Control Conference, Xi'an, China, (2013).
- [5] I. C. Dikmen, A. Arisoy and H. Temeltas, Attitude control of a quadcopter, International Conference on Recent Advances in Space Technologies, United States, (2010).
- [6] J. Faigl, T. Krajnik, V. Vonasek, e L. Peuil, Surveillance Planning with Localization Uncertainty for UAVs, 3rd Israeli Conference on Robotics, (2010).
- [7] I. C. S. Faria, W. M. Leão, M. H. Terra e R. S. Inoue, Identificação dos parâmetros do modelo dinâmico de um quadrotor, 67º Reunião Anual da Sociedade Brasileira para o Progresso da Cicência, São Carlos, Brasil, (2015).
- [8] K. Higuchi, T. Shimada and J. Rekimoto, Flying Sports Assistant: External Visual Imagery Representation for Sports Training, Proceedings of the 2nd Augmented Human International Conference, (2011).
- [9] G. Hunt, F. Mitzalis, T. Alhinai, P. A. Hooper and Mirko Kovac, 3D Printing with Flying Robots, IEEE International Conference on Robotics & Automation, Hong Kong, China, (2014).
- [10] T. Luukkonen, Modeling and control of quadcopter, Aalto University School of Science, (2011).
- [11] R. A. F. Romero, E. Prestes, F. Osório e D. Wolf, Robótica Móvel, Editora LTC, Rio de Janeiro, (2014).
- [12] J. L. Sanchez-Lopez, J. Pestana, P. de la Puente, R. Suarez-Fernandez and P. Campoy, A System for the Design and Development of Vision-based Multi-robot Quadrotor Swarms, Internatinal Conference on Unmanned Aircraft Systems, Orlando, USA, (2014).
- [13] K. P. Valavanis and M. Kontitsis, A Historical Perspective on Unmanned Aerial Vehicles, Intelligent Systems, Control and Automation: Science and Engineering, Springer Netherlands, vol. 33, 15–46, DOI:10.1007/978-1-4020-6114-1, ISBN:978-1-4020-6113-4, (2007).
- [14] Z. Zuo, Trajectory tracking control design with command-filtered compensation for a quadrotor, IET Control Theory Application, (2010).