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The authors in [5], while developing a genetic program to re-obtain differential equations
from known solutions, tested a very famous solitary wave of the KdV equation and surpri-
singly obtained a different equation. After introducing two arbitrary parameters a and ε,
they obtained the equation

ut + 2a
uxuxx
u
− εauxxx = 0. (1)

The choice εa = 1, a = 3/2 makes equation (1) relate to KdV and mKdV equations through
Miura-type transformations, see [1]. One of the main features of both KdV and mKdV
equations is the existence of pairs of pseudo-differential operators such that the equations
can be written as a compatibility condition of two linear equations. The existence of these
pairs leads to the existence of an infinite number of conserved densities, a very important
physical property that has been the subject of intense research.

We say an equation is solvable by the inverse scattering method if there exist two differential
operators L and B such that the system Lϕ = λϕ, ϕt = Bϕ is solved in the solutions of the
equation, for all spectral parameters λ, through the Lax equation Lt = [B,L]. The operators
L,B are then said to form a Lax pair for the equation under consideration.

The existence of such pair guarantees, see [2], the existence of a recursion operator, which
always maps a symmetry into another symmetry. However, we observed that equation (1)
will only admit recursion operators if εa = 1 and a = ±3/2, see [1, 3, 4]. Therefore, it is
natural to only look for Lax pairs of equation (1) for a = ±3/2 and εa = 1.

For that purpose, consider the differential operators

L = AD2
x + C[u], B = αD3

x + γ[u]Dx +
1

2
Dxγ[u],

where A,α are constants, u = u(x, t) and C[u], γ[u] are functions depending on u and its

derivatives. As L is a second-order differential operator, defining φ =

[
φ1
φ2

]
=

[
ϕx

ϕxx

]
,
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the system can be rewritten as the matrix representation φx = Uφ, φt = V φ, where

U =

 0 1

1

A
(λ− c) 0

 ,

V =


1

2
γx −

α

A
Cx γ +

α

A
(λ− C)

1

2
γxx −

α

A
Cxx +

1

A
(λ− C)γ +

α

A2
(λ− C)2

3

2
γx −

2α

A
Cx

 .
Lax equation is transformed into a zero-curvature representation ∂U

∂t −
∂V
∂x + [U, V ] = 0,

which reads  0 0

−Ct

A
+

α

4A
Cxxx +

3α

2A2
CCx 0

 = 0. (2)

The difficulty of obtaining a Lax pair is having the änsatz of which function C to choose.
In the particular case a = 3/2, the choices C = uxx/u, A = −1 and α = 4 show that

−Ct

A
+

α

4A
Cxxx +

3α

2A2
CCx =

(
1

u
D2

x −
uxx
u2

)(
ut + 3

uxuxx
u
− uxxx

)
,

which shows that equation (1) with εa = 1 and a = 3/2 is solvable by the inverse scattering
method. The case a = −3/2 is a little more difficult and has not been solved yet. Moreover,
it has not been clear yet if it will admit a Lax pair at all.
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