Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Solvability of a homogeneous third-order evolution equation by inverse scattering

Priscila Leal da Silva¹ Programa de Pós-Graduação em Matemática, Universidade Federal do ABC Igor Leite Freire² Centro de Matemática, Computação e Cognição, Universidade Federal do ABC

The authors in [5], while developing a genetic program to re-obtain differential equations from known solutions, tested a very famous solitary wave of the KdV equation and surprisingly obtained a different equation. After introducing two arbitrary parameters a and ϵ , they obtained the equation

$$u_t + 2a\frac{u_x u_{xx}}{u} - \epsilon a u_{xxx} = 0.$$
⁽¹⁾

The choice $\epsilon a = 1$, a = 3/2 makes equation (1) relate to KdV and mKdV equations through Miura-type transformations, see [1]. One of the main features of both KdV and mKdV equations is the existence of pairs of pseudo-differential operators such that the equations can be written as a compatibility condition of two linear equations. The existence of these pairs leads to the existence of an infinite number of conserved densities, a very important physical property that has been the subject of intense research.

We say an equation is solvable by the inverse scattering method if there exist two differential operators \mathcal{L} and \mathcal{B} such that the system $\mathcal{L}\varphi = \lambda\varphi$, $\varphi_t = \mathcal{B}\varphi$ is solved in the solutions of the equation, for all spectral parameters λ , through the Lax equation $\mathcal{L}_t = [\mathcal{B}, \mathcal{L}]$. The operators \mathcal{L}, \mathcal{B} are then said to form a Lax pair for the equation under consideration.

The existence of such pair guarantees, see [2], the existence of a recursion operator, which always maps a symmetry into another symmetry. However, we observed that equation (1) will only admit recursion operators if $\epsilon a = 1$ and $a = \pm 3/2$, see [1,3,4]. Therefore, it is natural to only look for Lax pairs of equation (1) for $a = \pm 3/2$ and $\epsilon a = 1$.

For that purpose, consider the differential operators

$$\mathcal{L} = AD_x^2 + C[u], \quad \mathcal{B} = \alpha D_x^3 + \gamma[u]D_x + \frac{1}{2}D_x\gamma[u],$$

where A, α are constants, u = u(x, t) and $C[u], \gamma[u]$ are functions depending on u and its derivatives. As \mathcal{L} is a second-order differential operator, defining $\phi = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} = \begin{bmatrix} \varphi_x \\ \varphi_{xx} \end{bmatrix}$,

¹priscila.silva@ufabc.edu.br

²igor.freire@ufabc.edu.br

1 7

2

the system can be rewritten as the matrix representation $\phi_x = U\phi$, $\phi_t = V\phi$, where

г

$$U = \begin{bmatrix} 0 & 1 \\ \frac{1}{A}(\lambda - c) & 0 \end{bmatrix},$$
$$V = \begin{bmatrix} \frac{1}{2}\gamma_x - \frac{\alpha}{A}C_x & \gamma + \frac{\alpha}{A}(\lambda - C) \\ \frac{1}{2}\gamma_{xx} - \frac{\alpha}{A}C_{xx} + \frac{1}{A}(\lambda - C)\gamma + \frac{\alpha}{A^2}(\lambda - C)^2 & \frac{3}{2}\gamma_x - \frac{2\alpha}{A}C_x \end{bmatrix}.$$

Lax equation is transformed into a zero-curvature representation $\frac{\partial U}{\partial t} - \frac{\partial V}{\partial x} + [U, V] = 0$, which reads Λ Τ

$$\begin{bmatrix} 0 & 0 \\ -\frac{C_t}{A} + \frac{\alpha}{4A}C_{xxx} + \frac{3\alpha}{2A^2}CC_x & 0 \end{bmatrix} = 0.$$
 (2)

The difficulty of obtaining a Lax pair is having the änsatz of which function C to choose. In the particular case a = 3/2, the choices $C = u_{xx}/u$, A = -1 and $\alpha = 4$ show that

$$-\frac{C_t}{A} + \frac{\alpha}{4A}C_{xxx} + \frac{3\alpha}{2A^2}CC_x = \left(\frac{1}{u}D_x^2 - \frac{u_{xx}}{u^2}\right)\left(u_t + 3\frac{u_xu_{xx}}{u} - u_{xxx}\right),$$

which shows that equation (1) with $\epsilon a = 1$ and a = 3/2 is solvable by the inverse scattering method. The case a = -3/2 is a little more difficult and has not been solved yet. Moreover, it has not been clear yet if it will admit a Lax pair at all.

Agradecimentos

P. L. da Silva would like to thank CAPES for her scholarship. I. L. Freire thanks FAPESP (2014/05024-8) and CNPq (308941/2013-6) for financial support.

Referências

- [1] P. L. da Silva, I. L. Freire and J. C. S. Sampaio, On a family of homogeneous dispersive equations admitting integrable members, submitted, 2016.
- [2] M. Gürses, A. Karasu and V. V. Sokolov, On construction of recursion operators from Lax representation, J. Math. Phys., 40, 6473–6490, 1999.
- [3] N. Petersson, N. Euler and M. Euler, Recursion operators for a class of integrable third-order evolution equations, Stud. Appl. Math., 112, 201–225, 2004.
- [4] J. A. Sanders and J. P. Wang, On the integrability of homogeneous scalar evolution equations, J. Diff. Eq., 147, 410-434, 1998.
- [5] A. Sen, D. P. Ahalpara, A. Thyagaraja and G. S. Krishnaswami, A KdV-like advection-dispersion equation with some remarkable properties, Commun. Nonlin. Sci. Num. Simul., 17, 4115–4124, 2012.