Trabalho apresentado no CNMAC, Gramado - RS, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Derivadas de ordem fracionária e uma interpretação em viscoelasticidade.

Carla M.C.Lino¹
Universidade Estadual Paulista, Faculdade de Engenharia, UNESP, Ilha Solteira, SP Berenice Camargo Damasceno²
Departamento de Matemática, UNESP, Ilha Solteira, SP Luciano Barbanti³
Departamento de Matemática, UNESP, Ilha Solteira, SP

1 Introdução

A teoria das derivadas de ordem não inteira (fracionárias) tem origem em 1695 em uma carta escrita por l'Hospital a Leibniz, e nessa o significado de uma derivada de ordem meio é proposto e discutido. A resposta de Leibniz, junto com contribuições de outros matemáticos como, Euler, Lagrange, Laplace, Fourier, Abel, Heaviside, Liouville, entre outros, levaram às primeiras definições de derivadas e integrais de ordem não inteira (fracionária). No final do século XIX, devido primordialmente às definições de derivadas fracionárias propostas por Riemann-Liouville e Grünwald-Letnikov, o assunto "derivadas fracionárias" parecia estar completo. Até o final do século passado o desenvolvimento do cálculo fracionário deu-se estritamente no campo da matemática pura, sem grandes aplicações em outras áreas. Contudo, em 1969 M. Caputo resolveu importantes problemas de viscoelasticidade utilizando uma nova definição, proposta por ele, para a derivada de ordem fracionária. Ele a utilizou também para descrever problemas de sismologia. De outro lado, a assim chamada derivada fracionária de Grünwald - Letnikov, mostrou-se bastante eficiente para resolver problemas numéricos. Para uma visão geral e técnicas sobre derivadas fracionárias, vide [2].

2 Objetivos

Daremos nesse trabalho uma interpretação para um caso de viscoelasticidade, mostrando a flexibilidade de intrepretação que as derivadas fracionárias possuem.

 $^{^{1}} carlamarilla@gmail.com\\$

²berenice@mat.feis.unesp.br

³barbanti@mat.feis.unesp.br

2

3 Resultados

Em viscoelasticidade temos dois estados fundamentais relacionando intensidade σ e deformação ε . São os casos, da mola $\sigma=k\varepsilon$ e da viscosidade pura Newtoriana $\sigma=L\frac{d}{dt}\varepsilon$. Em [1] Koeller introduziu uma generalização, o spring-pot: $\sigma=MD^{\alpha}\varepsilon$ ($0\leq\alpha\leq1$), onde D^{α} é operador derivada de ordem α . Observe que o caso da mola resulta em $\sigma=KD^{0}\varepsilon$ e o da viscosidade pura $\sigma=MD^{1}\varepsilon$, e os spring-pots são $\sigma=LD^{\alpha}\varepsilon$, intermediários com $0<\alpha<1$. Neste trabalho vamos estabelecer um método que é a generalização imediata para σ e ε polinômios, do caso emblemático que apresentamos.

Seja o spring-pot

$$\sigma(t) = LD^{\frac{1}{2}}\varepsilon(t) \tag{1}$$

com $\varepsilon(t)=t^2$ e consequentemente $\sigma(t)=\frac{2!L}{\Gamma(\frac{3}{5})}t^{\frac{3}{2}}$.

Discretizando esse spring-pot em uma escala:

$$\pi = \{a_1, a_1, a_3, ..., a_n, a_{n+1}, ...\}$$

temos:

$$\frac{a_{n+1}^2 - a_n^2}{a_{n+1} - a_n} = \frac{2!L}{\Gamma(\frac{3}{2})} t^{\frac{3}{2}},$$

e assim:

$$a_{n+1} = -a_n + \frac{2!L}{\Gamma(\frac{3}{2})} a_n^{\frac{3}{2}} > a_n.$$
 (2)

4 Conclusão

Portanto o processo spring-pot contínuo em (1) equivale numa escala π ao processo com derivadas discretas. Então a pergunta que fica é: como um processo dinâmico formulado num contexto contínuo pode ser equivalente ao processo num domínio discreto π ? Esta pergunta só poderá ser respondida se fizermos uma interpretação das derivadas fracionárias e na física não-usual do problema.

Referências

- [1] R. C. Koeller, "Aplications of fractional calculus theory of viscoelaslicity", *Trans.* ASME J. Applies. Mech., 51(2):299-307, 1984.
- [2] I. Podlubny, Fractional Differential Equations. Academic Press, New York, 1999.