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Abstract. This work proposes a new form of integral which arises from infinite partitions.
It uses upper and lower series instead of upper and lower Darboux finite sums. It is shown
that every Riemann integrable function, both proper and improper, is integrable in the sense
proposed here and both integrals have the same value. Furthermore it is shown that the
Riemann integral and our integral are equivalent for bounded functions in bounded intervals.
The advantage of this new integral is that a single definition allows the integration of bounded
or unbounded functions, in bounded or unbounded intervals. The present integral is different
from the ordinary Riemann integral, where it is necessary to have the prior definition of
bounded functions in bounded intervals.
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1 Introduction

The Riemann integral is commonly studied in initial Calculus courses. It has great
historical, didactic and computational importance. Historic for being the first rigorous
development, according to the criteria of modern mathematics; didactic because it is
simple, with the concept of limit being the only prerequisite; and computational because
many integrals can be calculated easily, via the Fundamental Theorem of Calculus. Its
disadvantage is that it is defined only for bounded functions in bounded intervals. One can
extend it to unbounded functions or unbounded intervals, which produces the improper
integrals, but it is still necessary to have a prior definition of the integral for bounded
functions in bounded intervals. The Darboux integral is interesting, it defines the integral
by way of suprema and infima, but it is well known that the Darboux integral is equivalent
to the Riemann integral [2] so no new results are brought by this device. The Lebesgue
integral is a powerful tool for various fields of mathematics and science. It allows one
to integrate a much larger number of functions than the Riemann integral and does not
require a prior definition of the integral for bounded functions in bounded intervals because
the same definition is used for bounded or unbounded functions in bounded or unbounded
intervals. However, as is known, although every Riemann integrable, bounded function,
defined in bounded intervals, is Lebesgue integrable, the same is not true for the Riemann
improper integrals. There are functions whose Riemann improper integral is convergent
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but which are not Lebesgue integrable. A classic example is the integral
∫∞
0

sinx
x . The

Henstock-Kurzweil integral is an effective generalisation of the Riemann integral. Every
Riemann integrable function, both proper and improper, is Henstock-Kurzweil integrable.
Moreover every Lebesgue integrable function, defined in intervals, is Henstock-Kurzweil
integrable. However the Henstock-Kurzweil integral does not escape the need for a prior
definition of the integral in bounded intervals, which is then extended to unbounded
intervals [1].

This paper proposes a definition of the integral that is different from all of the above
definitions. Like in Darboux, the integral is defined by way of upper and lower sums
but the important difference is that here infinite partitions and infinite sums, that is,
series instead of finite sums are used. The advantage of this new integral is that a
single definition allows the integration of bounded or unbounded functions, in bounded
or unbounded intervals. It is different from the Riemann integral, where it is necessary
to have the prior definition for bounded functions in bounded intervals. In the ordinary
Riemann integral, a partition of an interval is a finite set whose smallest element is the
interval’s lower end and the greatest element is the interval’s upper end. In the integral
proposed here, a partition of an interval is an infinite set whose elements converge to the
interval’s endpoints. This fact allows one to deal, in the same way, with both bounded
and unbounded intervals. Then it is shown that every Riemann integrable function, both
proper and improper, is integrable, in the sense established here, and both integrals have
the same value. Furthermore for bounded functions, in bounded intervals, the Riemann
integral and our integral are equivalent.

In the present paper some details of calculations are omitted every time that a state-
ment starts with “it is possible to show that.” Those details will be presented in a longer
version of this work.

2 The Integral

In everything that follows, RE denotes the set of extended real numbers, [−∞,∞],
provided with its usual topology.

Definition 2.1. Let a, b ∈ RE where a < b. A sequence (xn)n∈Z is called an infinite
partition of [a, b] if and only if (xn)n∈Z is strictly increasing and limn→−∞ xn = a and
limn→∞ xn = b.

If a, b ∈ RE with a < b, f : [a, b] → RE and (xn)n∈Z is an infinite partition of
[a, b], denote, for each i ∈ Z, ∆xi := xi − xi−1, mi := inf

{
f(x); x ∈ [xi−1, xi]

}
, Mi :=

sup
{
f(x); x ∈ [xi−1, xi]

}
, I
(
f ; (xn)n∈Z

)
:=
∑∞

i=−∞mi∆xi if this series is convergent in
RE and S

(
f ; (xn)n∈Z

)
:=
∑∞

i=−∞Mi∆xi if this series is convergent in RE . Denote, by
P∞
(
f ; [a, b]

)
, the set of all the infinite partitions (xn)n∈Z of [a, b] such that

∑∞
i=−∞mi∆xi

and
∑∞

i=−∞Mi∆xi are both convergent in RE .

Definition 2.2. Let a, b ∈ RE where a < b and let f : [a, b] → RE be a function. The
function f is said to be integrable in [a, b] if and only if

sup
{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
= inf

{
S(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
. (1)
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And in this case the integral of f in [a, b] is defined by∫ b

a
f := sup

{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
. (2)

Henceforth the integral, defined above, is called simply an integral and is denoted by∫ b

a
f. The Riemann integral is denoted by

∫ b

a
R

f.

Recall some definitions concerning the Riemann integral. If a, b ∈ R where a ≤ b, P is
said to be a partition of [a, b] if and only if P = {x0, . . . , xn}, for some n ∈ N, and a = x0 ≤
x1 ≤ · · · ≤ xn−1 ≤ xn = b. The set of all partitions, P of [a, b], is denoted by P

(
[a, b]

)
. If

a, b ∈ R where a ≤ b, f : [a, b] → R is a bounded function and P ∈ P
(
[a, b]

)
then ∆xi :=

xi− xi−1; mi := inf
{
f(x); x ∈ [xi−1, xi]

}
; Mi := sup

{
f(x); x ∈ [xi−1, xi]

}
(the existence

of mi and Mi are ensured because f is bounded); I(f ;P ) :=
∑n

i=1mi∆xi and S(f ;P ) :=∑n
i=1Mi∆xi. Remember also that I(f ;P ) ≤ I(f ;P ∪Q) ≤ S(f ;P ∪Q) ≤ S(f ;Q) for all

P,Q ∈ P
(
[a, b]

)
. This ensures that

{
I(f ;P ); P ∈ P

(
[a, b]

)}
is bounded from above and{

S(f ;P ); P ∈ P
(
[a, b]

)}
is bounded from below. The function f is Riemann integrable

in [a, b], if and only if sup
{
I(f ;P ); P ∈ P

(
[a, b]

)}
= inf

{
S(f ;P ); P ∈ P

(
[a, b]

)}
and, in

this case, the Riemann integral of f in [a, b] is defined by∫ b

a
R

f := sup
{
I(f ;P ); P ∈ P

(
[a, b]

)}
= inf

{
S(f ;P ); P ∈ P

(
[a, b]

)}
. (3)

Proposition 2.1. Let a, b ∈ RE where a < b and let f : [a, b] → RE be a function. It
follows that

I(f ;P ) ≤ S(f ;Q), (4)

for all P,Q ∈ P∞
(
f ; [a, b]

)
.

Proof. Let a, b ∈ RE where a < b, let f : [a, b] → RE be a function and let P,Q ∈
P∞
(
f ; [a, b]

)
be arbitrary. Say P = (xn)n∈Z and Q = (yn)n∈Z. Define z0 := min{x0, y0},

denote A := {xn, yn; n ∈ Z; such that xn > z0 and yn > z0} and, for each n ≥ 1, define
zn := min (A \ {zi; 0 ≤ i ≤ n− 1}). Also denote B := {xn, yn; n ∈ Z; such that xn <
z0 and yn < z0} and, for each n ≤ −1, define zn := max (B \ {zi; n + 1 ≤ i ≤ 0}). Notice
that (zn)n∈Z ∈ P∞

(
f ; [a, b]

)
.

Let l ∈ N such that x0 = zl−1. For each n ∈ N there is kn ∈ N such that xn =

zkn . Notice that kn < kn+1 for all n ∈ N. Since
(∑kn

i=l mi∆zi

)
n∈N

is a subsequence of(∑k
i=l mi∆zi

)
k∈N

, it follows that limn→∞
∑kn

i=l mi∆zi =
∑∞

i=l mi∆zi. Notice also that∑n
i=1mi∆xi ≤

∑kn
i=l mi∆zi for all n ∈ N whence

∑∞
i=1mi∆xi ≤ limn→∞

∑kn
i=l mi∆zi =∑∞

i=l mi∆zi. In a similar way,
∑0

i=−∞mi∆xi ≤
∑l−1

i=−∞mi∆zi. Thus
∑∞

i=−∞mi∆xi ≤∑∞
i=−∞mi∆zi. Now let t ∈ N such that y0 = zt−1. For each n ∈ N there is sn ∈ N

such that yn = zsn . Notice also that
∑sn

i=tMi∆zi ≤
∑n

i=1Mi∆yi for all n ∈ N whence
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∑∞
i=tMi∆zi = limn→∞

∑sn
i=tMi∆zi ≤

∑∞
i=1Mi∆yi. In a similar way,

∑t−1
i=−∞Mi∆zi ≤∑0

i=−∞Mi∆yi. Thus
∑∞

i=−∞Mi∆zi ≤
∑∞

i=−∞Mi∆yi. Thus

I(f ;P ) =

∞∑
i=−∞

mi∆xi ≤
∞∑

i=−∞
mi∆zi ≤

∞∑
i=−∞

Mi∆zi ≤
∞∑

i=−∞
Mi∆yi = S(f ;Q). (5)

Corollary 2.1. Let a, b ∈ RE where a < b and let f : [a, b]→ RE be a function. It follows
that

sup
{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
≤ inf

{
S(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
. (6)

Lemma 2.1. Let a ∈ R, b ∈ RE where a < b and let f : [a, b] → RE be a function with
f(x) ∈ R for all x ∈ [a, b) and where f is Riemann integrable on every closed subinterval

of [a, b). If the improper Riemann integral

∫ b

a
R

f is convergent then, for each positive

ε ∈ R, there is a Pε ∈ P∞
(
f ; [a, b]

)
such that∫ b

a
R

f − ε ≤ I(f ;Pε) ≤ S(f ;Pε) ≤
∫ b

a
R

f + ε. (7)

Proof. Let a ∈ R, b ∈ RE where a < b and let f : [a, b]→ RE be a function with f(x) ∈ R
for all x ∈ [a, b) and where f is Riemann integrable on every closed subinterval of [a, b)

such that the improper Riemann integral

∫ b

a
R

f is convergent.

Let b =∞. The case b ∈ R is analogous. Say

∫ ∞
a

R

f = L ∈ R. Let ε ∈ R be arbitrary

positive. It is possible to show that there are (Nn)n∈N ⊂ R, (kn)n∈N ⊂ N and (xn)n≥0 ⊂ R
strictly increasing sequences such that x0 = a, Nn ≥ n, xkn = Nn, limn→∞ xn =∞ and

L− 1

n
− ε <

∫ Nn

a
R

f − ε <

kn∑
i=1

mi∆xi ≤
kn∑
i=1

Mi∆xi <

∫ Nn

a
R

f + ε < L +
1

n
+ ε. (8)

From (8) it follows that
(∑kn

i=1mi∆xi

)
n∈N

and
(∑kn

i=1Mi∆xi

)
n∈N

are bounded se-

quences of real numbers. Thus there are (ks)s∈N and (kr)r∈N which are subsequences

of (kn)n∈N such that
(∑ks

i=1mi∆xi

)
s∈N

and
(∑kr

i=1Mi∆xi

)
r∈N

are convergent sequences

and, furthermore,

L− ε ≤ lim
s→∞

ks∑
i=1

mi∆xi ≤ lim
r→∞

kr∑
i=1

Mi∆xi ≤ L + ε. (9)
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It is possible to show that
∑∞

i=1mi∆xi and
∑∞

i=1Mi∆xi are convergent and
∑∞

i=1mi∆xi =

lims→∞
∑ks

i=1mi∆xi and
∑∞

i=1Mi∆xi = limr→∞
∑kr

i=1Mi∆xi. Thus

L− ε ≤
∞∑
i=1

mi∆xi ≤
∞∑
i=1

Mi∆xi ≤ L + ε. (10)

Let (zn)n∈N be a strictly decreasing sequence, convergent to a. Then there are v ∈ N such
that zv < x1. Define wi := zv−i, for all i ≤ 0, and define wi = xi, for all i ≥ 1. It is
possible to show that Pε := (wn)n∈Z ∈ P∞

(
f ; [a,∞]

)
and∫ ∞

a
R

f − ε ≤ I(f ;Pε) ≤ S(f ;Pε) ≤
∫ ∞
a

R

f + ε. (11)

Theorem 2.1. Let a, b ∈ RE where a < b and let f : [a, b] → RE be a function. If f
is Riemann integrable, either as a proper integral or as an improper integral, then f is
integrable and ∫ b

a
f =

∫ b

a
R

f. (12)

Proof. Let a, b ∈ RE where a < b and let f : [a, b]→ RE be a function.
i) If a, b ∈ R, f

(
[a, b]

)
⊂ R and f is bounded and Riemann integrable then, by (3),

sup
{
I(f ;P ); P ∈ P

(
[a, b]

)}
=

∫ b

a
R

f = inf
{
S(f ;P ); P ∈ P

(
[a, b]

)}
. (13)

It is possible to show that sup
{
I(f ;P ); P ∈ P

(
[a, b]

)}
≤ sup

{
I
(
f ;P ); P ∈ P∞

(
f ; [a, b]

)}
and inf

{
S(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
≤ inf

{
S(f ;P ); P ∈ P

(
[a, b]

)}
. From Corollary 2.1,

sup
{
I(f ;P ); P ∈ P

(
[a, b]

)}
≤ sup

{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
≤ inf

{
S(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
≤ inf

{
S(f ;P ); P ∈ P

(
[a, b]

)}
.

(14)

From (13) it follows that f is integrable and

∫ b

a
f =

∫ b

a
R

f.

ii) If a ∈ R, f
(
[a, b)

)
⊂ R, f is Riemann integrable on every closed subinterval of [a, b)

and the improper integral

∫ b

a
R

f is convergent. From Lemma 2.1, for each positive ε ∈ R

there are Pε ∈ P∞
(
f ; [a, b]

)
such that∫ b

a
R

f − ε ≤ I(f ;Pε), (15)
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whence ∫ b

a
R

f ≤ sup
{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
. (16)

The inequality

inf
{
S(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
≤
∫ b

a
R

f (17)

is obtained in a similar way. By Corollary 2.1,

sup
{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
≤ inf

{
S(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
. (18)

Thus

sup
{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
= inf

{
S(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
=

∫ b

a
R

f. (19)

iii) If b ∈ R and f
(
(a, b]

)
⊂ R and f is Riemann integrable on every closed subinterval

of (a, b] such that the improper integral

∫ b

a
R

f is convergent then the proof follows in a

similar way to case (ii) with a similar lemma to Lemma 2.1.
iv) If f

(
(a, b)

)
⊂ R, f is Riemann integrable on every closed subinterval of (a, b) and

the improper integral

∫ b

a
R

f is convergent then the proof follows in a similar way to case

(ii) with a similar lemma to the Lemma 2.1.

Theorem 2.2. Let a, b ∈ R where a < b and let f : [a, b] → R be a bounded function. It
follows that f is integrable if and only if f is Riemann integrable. And in this case∫ b

a
f =

∫ b

a
R

f. (20)

Proof. Let a, b ∈ R where a < b and let f : [a, b] → R be a bounded function. That
Riemann integrability implies integrability is already seen in Theorem 2.1. Now suppose
that f is integrable. It follows that

sup
{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
= inf

{
S(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
. (21)

Denote L := sup
{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
. Let there be an arbitrary n ∈ N. Then

there is a Pn ∈ P∞
(
f ; [a, b]

)
such that L − 1

n < I(f ;Pn). Say Pn = (xi)i∈Z. Since f is
a bounded function, there is positive A ∈ R such that −A ≤ f(x) for all x ∈ [a, b]. Let
ε :=

∑∞
i=−∞mi∆xi − L + 1

n = I(f ;Pn) − L + 1
n > 0. Then there are k ∈ N such that

x−k < a+ ε
3A and xk > b− ε

3A and s ∈ N such that
∑∞

i=−∞mi∆xi− ε
3 <

∑j
i=−j mi∆xi for

all j ≥ s. Take l = max{s, k}. Thus
∑∞

i=−∞mi∆xi − ε
3 <

∑l
i=−l mi∆xi, x−l−1 < a + ε

3A
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whence − ε
3 < −A(x−l−1− a) ≤ inf f

(
[a, x−l−1]

)
(x−l−1− a) and xl > b− ε

3A whence − ε
3 <

−A(b−xl) ≤ inf f
(
[xl, b]

)
(b−xl). Thus, it follows that L− 1

n =
∑∞

i=−∞mi∆xi−ε = − ε
3 +∑∞

i=−∞mi∆xi− ε
3−

ε
3 < inf f

(
[a, x−l−1]

)
(x−l−1−a)+

∑l
i=−l mi∆xi+inf f

(
[xl, b]

)
(b−xl).

Denoting y0 := a, yi := x−l−2+i for all i ∈ {1, . . . , 2l + 2} and y2l+3 := b, it follows that
L− 1

n < inf f
(
[a, x−l−1]

)
(x−l−1−a)+

∑l
i=−l mi∆xi +inf f

(
[xl, b]

)
(b−xl) =

∑2l+3
i=1 mi∆yi.

Denoting Qn := {y0, . . . , y2l+3} it follows that Qn ∈ P
(
[a, b]

)
and L − 1

n < I(f ;Qn) ≤
sup

{
I(f ;P ); P ∈ P

(
[a, b]

)}
. Thus

sup
{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
= L ≤ sup

{
I(f ;P ); P ∈ P

(
[a, b]

)}
. (22)

In a similar way it follows that

inf
{
I(f ;P ); P ∈ P

(
[a, b]

)}
≤ inf

{
I(f ;P ); P ∈ P∞

(
f ; [a, b]

)}
. (23)

Thus f is Riemann integrable and ∫ b

a
R

f =

∫ b

a
f. (24)

3 Conclusion

This paper defines an integral by way of upper and lower infinite sums, that is, upper
and lower series. A partition of an interval is an infinite set whose elements converge to the
interval’s endpoints. The advantage of this new integral is that a single definition allows
the integration of bounded or unbounded functions, in bounded or unbounded intervals.
It is different from the Riemann integral, where it is necessary to have the prior definition
for bounded functions in bounded intervals. It is shown that every Riemann integrable
function, both proper and improper, is integrable, in the sense established here, and both
integrals have the same value. Furthermore for bounded functions, in bounded intervals,
the Riemann integral and our integral are equivalent.
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