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Chaotic sliding dynamics for planar piecewise affine maps
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Abstract. In this work we adapt the theory of piecewise differential systems to the world
of piecewise affine maps. Through this adaptation it is possible to define a sliding map in
the sense of Filippov. We prove that there exists a choice for the pieces of the piecewise
affine map, such that the associate sliding map possesses chaotic dynamics.
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1 Introduction

Basically we can classify the theory of dynamical systems in two classes: continuous
and discrete. Roughly speaking, the continuous ones are those where the dynamics is
given by flows of vector fields; and the discrete ones are those where the dynamics is given
by maps.

Piecewise smooth differential systems have frequently appeared in different fields of
science such as control theory, mechanical engineering with impact and dry frictions,
electronic circuits with switches and so on, see e.g. [2,3,9,10,13] and the references therein.
Theory on dynamics of piecewise smooth differential systems has had advance since the
pioneering works of Andronov [1] and Filippov [7]. The theory has been greatly developed
in the past three decades, especially in the past ten years, see e.g. [4, 5, 8, 11,12,14].

To the best of our knowledge, the study of the dynamics of piecewise smooth maps in
the Filippov sense still is not developed. The aim of this paper is to start this study. As
we will see along the paper we can have chaotic dynamics even if the piecewise smooth
system is the simplest possible: a piecewise affine system.

2 Sliding dynamics

Let H : R2 → R be a smooth function having 0 = H(0, 0) as a regular value. Denote
Σ = H−1(0), Σ+ = H−1(0,∞) and Σ− = H−1(−∞, 0). Before we start the discussion
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about sliding dynamics for piecewise smooth maps we recall the Filippov convention for
piecewise smooth vector fields. Consider X,Y : R2 → R

2 smooth vector fields and define
the piecewise smooth vector field (PSVF) by

Z(x, y) =

{

X(x, y), if (x, y) ∈ Σ+,

Y (x, y), if (x, y) ∈ Σ−.

In what follows we will use the notation X.H(p) = 〈∇H(p),X(p)〉 and Xi.H(p) =
〈

∇(Xi−1.H)(p),X(p)
〉

, i ≥ 2, where 〈., .〉 is the usual inner product in R
2. Following

the Filippov rule, we distinguish the following regions on the discontinuity set Σ :

• Crossing region for PSVF: Σc = {p ∈ Σ | (X.H(p))(Y.H(p)) > 0}.

• Escaping region for PSVF: Σe = {p ∈ Σ |X.H(p) > 0 and Y.H(p) < 0}.

• Sliding region for PSVF: Σs = {p ∈ Σ |X.H(p) < 0 and Y.H(p) > 0}.

Consider Z = (X,Y ) and p ∈ Σe ∪Σs. The sliding vector field ZΣ associated to Z at p is
the convex combination of X(p) and Y (p) tangent to Σ at p (see Figure 1).

q

q + Y (q)

q +X(q)

ZΣ(q)

Σs

Figure 1: Filippov’s convention.

Consider two F+, F− : R2 → R
2 smooth maps. The space state R

2 is splited into
two subsets Σ+ and Σ− by Σ. We refer Σ as switching manifold and without loss of
generality we assume that Σ = {(x, y) ∈ R

2;x = 0}. We denote F = (F+, F−) ∈ Ω(R2),
F+ = (f1, g1) and F− = (f2, g2). Define the piecewise smooth map (PSM) by

F (x, y) =

{

F+(x, y), if (x, y) ∈ Σ+,

F−(x, y), if (x, y) ∈ Σ−.
(1)

Inspired in the Filippov rule for vector fields we define the following regions in Σ:

• Crossing region for PSM: Σc = {p ∈ Σ | : f1(p).f2(p) > 0}.

• Escaping region for PSM: Σe = {p ∈ Σ | f1(p) > 0 and f2(p) < 0}.

• Sliding region for PSM: Σs = {p ∈ Σ | f1(p) < 0 and f2(p) > 0}.

Now we define the sliding map associated to a piecewise smooth map.
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Definition 2.1. Consider F = (F+, F−) and p ∈ Σe∪Σs. The sliding map FΣ associated
to F at p is defined by a convex combination (1 − λ)F+ + λF−, λ ∈ (0, 1) satisfying that
the first coordinate is zero, that is

FΣ(p) =

(

0,
f2(p)g1(p)− f1(p)g2(p)

f2(p)− f1(p)

)

. (2)

3 One dimensional chaotic dynamics

There are many possible definitions of chaos, ranging from measure theoretic notions
of randomness in ergodic theory to the topological approach we will adopt here. The first
ingredient to a dynamical system to be chaotic is the following definition.

Definition 3.1. A dynamical system f : J → J is said to be topologically transitive if for
any pair of open sets U, V ⊂ J there exists k > 0 such that fk(U)∩V 6= ∅. Here fk means
f ◦ f ◦ · · · ◦ f , k times.

If a map is topologically transitive then it has points that eventually move under itera-
tion from one arbitrarily small neighborhood to any other. In other words, the dynamical
system can not be decomposed into two disjoint connected components.

The second ingredient to a dynamical system be chaotic is the following.

Definition 3.2. A dynamical system f : J → J has sensitive dependence on initial
conditions if there exists δ > 0 such that, for any x ∈ Jand any neighborhood V of x, the
exists y ∈ U and n ≥ 0 such that |fn(x)− fn(y)| > δ.

If a map possesses sensitive dependence on initial conditions then there exist points
arbitrarily close to x which eventually separate from x by at least δ under iteration of f .
The systems that satisfy this definition are very complicated for practical purposes. Small
errors in computation introduced by round-off may become very large and can conduce to
wrong conclusions.

We will see that the third ingredient of chaos is a regularity of the system in terms of
periodic points.

There are many possible definitions of chaos, some stronger and some weaker than
ours. We choose the Devaney’s Definition of Chaos that can be seen in [6].

Definition 3.3. Let V be a set and f : J → J be a map. The map f is said to be chaotic
on J if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

3. periodic points are dense in J .
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We have not mentioned before, but a point p ∈ J is periodic to the map f : J → J if
there exists n > 0 such that fn(p) = p.

A very well studied dynamical system is the quadratic family Fµ(x) = µx(1− x) that
depends on the parameter µ > 1. When the parameter vary from 1 to 3 then Fµ has
trivial dynamics. But for µ > 2+

√
5 the dynamics is very complicated. The proof of next

proposition can be found in [6].

Proposition 3.1. The quadratic maps Fµ(x) = µx(1 − x) are chaotic on Λ when µ >

2 +
√
5. Here Λ is a Cantor Set contained in [0, 1] ⊂ R.

In next section we give more details about the Cantor Set.

4 Chaotic sliding dynamics

In this section we present our main result. In fact is a very surprising result because
of the following. The affine maps are known to have trivial dynamics, but in the context
of piecewise affine maps, the switching manifold can produce chaotic sliding dynamics,
according to Definition 3.3.

Theorem 4.1. There exists a piecewise affine map F = (F+, F−), given by (1), such that
the sliding map FΣ associated to F , given by (2), is chaotic on a subset C of the switching
manifold Σ.

Proof. Consider the piecewise affine map given by

F (x, y) =

{

F+(x, y) = (−2 + a−x+ y, 2 + d−x− 9y), if x > 0,
F−(x, y) = (1 + a+x+ y,−1 + d+x+ 15y), if x < 0.

(3)

The sliding region Σs is given by conditions f1(0, y) < 0 and f2(0, y) > 0, i.e., −2 + y < 0
and 1 + y > 0. So, we have that

Σs = {0} × (−1, 2).

See Figure 2.
Now, we compute the sliding map FΣ associated to F at p = (0, y) according to (2)

and we obtain

FΣ(p) =

(

0,
f2(p)g1(p)− f1(p)g2(p)

f2(p)− f1(p)

)

=

(

0,
(1 + y)(2 − 9y)− (−2 + y)(−1 + 15y)

(1 + y)− (−2 + y)

)

= (0, 8y(1 − y)).

Observe that FΣ has essentially the same expression of the quadratic family Fµ, with
µ = 8. So, using the fact that 8 > 2+

√
5, it follows from Proposition 3.1 that FΣ is chaotic

on a Cantor set C = {0} × Λ. We have that C ⊂ {0} × [0, 1] ⊂ {0} × (−1, 2) ⊂ Σ.
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Figure 2: Sliding Region.

Just for sake of completeness, in the sequel we give details of the Cantor set Λ. The
interval I = [0, 1] is no longer invariant under Fµ, for µ > 2 +

√
5, i.e., there are points

which are mapped outside I. It is still possible to consider the dynamics of Fµ, but one
has to restrict the domain to an invariant subset of I, i.e. to the set Λ of the form

Λ =
⋂

n∈N

F−n
µ (I).

If y ∈ C ⊂ I for each n ∈ N, we have that O(y) = {y, Fµ(y), F
2
µ (y), . . . } ⊂ I. This set

is called the invariant set of the map Fµ and it turns out to be non-empty. The map
Fµ on the space X = Λ gives a well defined dynamical system, since Fµ(Λ) ⊂ Λ and for
any y ∈ Λ we can iterate Fµ forever. The set Λ, though, has a quite complicated fractal
structure: it is a Cantor set. The best known Cantor set is the middle third Cantor set.

Let us describe the invariant set of Fµ iteratively. One can see that the points y such
that Fµ(y) ∈ I belong to the two disjoint subintervals, say I1 and I2 such that F−1

µ ([0, 1]) =
I1 ∪ I2. The points for which Fµ(y) ∈ I and F 2

µ(y) ∈ I belong to F−1
µ (I1)∪F−1

µ (I2) which
consists of 4 disjoint intervals, two obtained by removing a central subinterval from I1
and the other two obtained by removing a central interval from I2. Continuing like this,
one can see that the points which can be iterated n times belong to a disjoint union of 2n

intervals. The set of points which can be iterated infinitely many times can be obtained
by iterating this construction. What is left by intersecting all the disjoint unions of 2n

intervals is also a Cantor set and has a fractal structure.

5 Conclusions

The contribution of this work is in the theory of piecewise smooth systems, particularly
in the case of piecewise affine maps. More specifically, we have obtained chaotic dynamics
for the sliding map associated to a particular piecewise affine map.
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