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Abstract. This article gives an alternative approach to the self-shrinking and self-expanding
solutions of the curve shortening flow, which are related to singularity formation of the mean
curvature flow. Further we describe the self-similar solutions in terms of a simple ODE and
give an alternative proof that they lie in planes.

Keywords. Curve Shortening Flow, Abresch & Langer Curves, Planar Solutions

1 Introduction

To deform a curve (usually smooth) by the curve shortening flow (CSF) is to let it
evolve in the direction of its curvature vector, thus generating a family of curves. The
problem of understanding the behavior of such family was first addressed by Mullins [9]
in 1956 to study ideal grain boundary motion in two dimensions. Renewed interest in the
topic came with the works of Gage and Hamilton (e. g. [4], where they show that convex
plane curves shrink to a point, becoming more circular as time advances) and Grayson (e.
g. [5]). Since then the problem has been studied by many, and of particular significance
has been the study of singularity formation.

The present work does not purport to contain a comprehensive introduction to the CSF
because of the great number of contributions to the subject (e. g. “The curve shortening
flow” of Chou and Zhu [3] contains 113 items in its bibliography). As an important result
we cite the complete classification of closed plane curves which shrink under the CSF by
Abresch and Langer [1].

This work was somewhat inspired by the recent works of Halldorsson [6], which classifies
self-similar (in a broader context) plane curves of the CSF, and Altschuler, Altschuler,
Angenent and Wu [2], which provides a classification of self-similar solutions (or solitons)
of the CSF in Rn. Both works are based in ODE techniques and the last of them mentions
the well known fact, that dilating solitons are planar. In sections 4 and 5 we prove that
shrinking and expanding solitons are planar.
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2 Plane self-shrinkers.

Definition 2.1. A family γ : (a, b)× I → Rn of smooth immersions γt : I → Rn, evolves
by the curve shortening flow (CSF) if it satisfies(

∂γ

∂t

)⊥
=
∂2γ

∂s2
, (1)

where s is the arc length parameter (not necessarily the parameter of I) of the curve γt.

Given an initial curve γ0 : I → Rn, if there is a unique family γ : [0, ε) × I → Rn

satisfying γ(0, ·) = γ0 (to find such a family is to locally solve a P.D.E), we say that the
curve shortening flow is deforming the initial curve.

The present work discusses a special class of curves that is deformed by the curve
shortening flow only by changing its size, and not its shape. These curves are said self-
similar solutions to the CSF.

Let γ : I → R2 be a self-similar shrinking solution of the curve shortening flow that is
parametrized by arc length. Thus

γ′′ = −γ⊥ = 〈γ, γ′〉γ′ − γ. (2)

Lemma 2.1. The only self-shrinkers (solution of eq. (2)) that pass through the origin are
the straight lines.

Proof. If γ(t0) = 0 and γ′(t0) = −→v , then ‖−→v ‖ = 1, for the curve is parametrized by arc
length. It follows that β(t) = (t− t0)−→v satisfies

β′′(t) = 0,

and
〈β, β′〉β′ − β = (t− t0)−→v − (t− t0)−→v = 0.

Therefore β(t), t ∈ R, is a solution to (2) with β(t0) = γ(t0) = 0 and β′(t0) = γ′(t0) = −→v .
From the uniqueness of the solutions to the associated (with eq. (2)) initial value problem
it follows that γ(t) = β(t).

The straight lines are static under the curve shortening flow. As the other solutions
do not cross the origin, we can write them in polar coordinates. We follow calculating

〈γ, γ〉′′ = 2〈γ′′, γ〉+ 2〈γ′, γ′〉,

and, writing α = 〈γ, γ〉, we get in view of eq. (2)

α′′ − (α′)2

2
+ 2α = 2. (3)

The associated initial value problem admits an unique solution. Further there are
solutions of eq. (3) that are always positive:
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Lemma 2.2. A solution of eq. (3) with 0 < α(0) < 1 and α′(0) = 0 is strictly positive.

Proof. First note that α(t) has a local minimum at t = 0, so that if there is t1 ∈ D(α)
such that α(t1) ≤ α(0), then there would be a local maximum at some t0 ∈ (0, t1). But

β(t) := α(t0 − t),

also satisfies eq. (3) and β(0) = α(t0), β
′(0) = α′(t0) and β′′(0) = α′′(t0). Thus a solution

of eq. (3) would exist for all t ∈ R and be given by

α∗(t) =

{
α(t− 2nt0), t ∈ [2nt0, (2n+ 1)t0)
β(t− 2nt0) = α((2n+ 1)t0 − t), t ∈ [(2n+ 1)t0, (2n+ 2)t0)

so that min α(t) = α(0).

The figure below illustrates the construction of a solution to eq. (3). Further, the
periodicity of the solution is expected from the actual form of the Abresch & Langer
curves.

Figure 1: A solution α(t), with α(0) = 0.6 and α′(0) = 0

For every solution of eq. (3) that is positive, it is possible to define a function u =
√
α

and write the self-shrinker in polar coordinates:

γ(t) = u(t)(cos(θ(t)), sin(θ(t))). (4)

Beyond this u =
√
α implies

α′ = 2uu′ and α′′ = 2u′′u+ 2(u′)2

so that equation (3) turns into

u′′u+ (u′)2 − [u′]2u2 + u2 = 1. (5)

Further it holds

γ′ =u′(cosθ, sinθ) + uθ′(−sinθ, cosθ) (6)

γ′′ =[u′′ − u[θ′]2](cosθ, sinθ) + [2u′θ′ + uθ′′](−sinθ, cosθ) (7)

−γ⊥ =[u[u′]2 − u](cosθ, sinθ) + [u2u′θ′](−sinθ, cosθ), (8)
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Therefore equation (2) holds if, and only if, both equations hold:

u′′ − u[θ′]2 = u[u′]2 − u, (9)

2u′θ′ + uθ′′ = u2u′θ′ (10)

where u is a known function and, recalling that ‖γ′‖ = 1,

[θ′]2 =
1− [u′]2

u2
(11)

and

θ =

∫
4α(t)− (α′(t))2

4α2(t)
dt. (12)

In figure 2 there are plots of self-shrinkers constructed from numerical solutions of eqs.
(3) and (12). It is not clear which initial conditions generate closed curves.

Figure 2: Noncompact Abresch & Langer Curves.

It is not hard to see that any solutions u and θ of equations (5) and (11) also satisfy
eq. (9) and (10) and thus generate self-shrinkers of the curve shortening flow through
equation (4):

Theorem 2.1. A curve C parametrized by γ : I → R2, γ(t) =
√
α(t)(cos(θ(t)), sin(θ(t)))

is a self-shrinker of the curve shortening flow if, and only if,

1. it is a straight line or

2. α(t) > 0 for all t ∈ I and

α′′ − (α′)2

2
+ 2α = 2,

θ =

∫
4α(t)− (α′(t))2

4α2(t)
dt.

3 Plane self-shrinkers.

Consider now a self-similar solution of the curve shortening flow γ : I → R3 that is
parametrized by arc length, then α = 〈γ, γ〉 also satisfies eq. (3). Denoting u =

√
α
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and taking a positive solution O.D.E. (3) one can write the self-shrinker in spherical
coordinates:

γ(t) = u(cos θ(t) sinϕ(t), sin θ(t) sinϕ(t), cosϕ(t)).

We use the following moving frame to calculate γ′′ and γ⊥:

X =

 cos θ sinϕ
sin θ sinϕ

cosϕ

 ,
∂X

∂θ
=

 − sin θ sinϕ
cos θ sinϕ

0

 ,
∂X

∂ϕ
=

 − cos θ cosϕ
− sin θ cosϕ
− sinϕ

 .

Then:

γ′(t) = u′X + uθ′
∂X

∂θ
+ uϕ′

∂X

∂ϕ
,

γ′′(t) =
[
u′′ − u[θ′]2 sin2 ϕ− u[ϕ′]2

]
X +

[
2u′ϕ′ − u[θ′]2 sinϕ cosϕ+ uϕ′′

] ∂X
∂ϕ

+

[
2u′θ′ + uθ′′ + uθ′ϕ′

cosϕ

sinϕ
+ uϕ′θ′

cosϕ

sinϕ

]
∂X

∂θ

and

γ⊥ = uX − uu′
[
u′X + uθ′

∂X

∂θ
+ uϕ′

∂X

∂ϕ

]
.

In this fashion eq. (2) implies that

u′′ − sin2 ϕu[θ′]2 − u[ϕ′]2 = −u+ u[u′]2,

2u′θ′ + uθ′′ + uθ′ϕ′
cosϕ

sinϕ
+ uϕ′θ′

cosϕ

sinϕ
= u2u′θ′,

2u′ϕ′ − u[θ′]2 sinϕ cosϕ+ uϕ′′ = u2u′ϕ′

and, as we chose a parametrization by arc length,

[u′]2 + [uθ′]2 sin2 ϕ+ [uϕ′]2 = 1.

Numerical evaluation of these equations indicate that all self-shrinkers in R3 lie in planes:

Figure 3: Two plots of the same self-shrinker from different angles.
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4 Self-shrinking curves in Rn

In this section we prove:

Theorem 4.1. Every self-shrinking solution of the curve shortening flow γ : I → Rn lies
in a plane.

Proof. First of all let γ be parametrized by arc length. Then, by eq. (2),

γ′′′ =γ′ − γ′ + 〈γ, γ′′〉γ′ + 〈γ, γ′〉γ′′

=− 〈γ, γ〉γ′ + 〈γ, γ′〉2γ′ + 〈γ, γ′〉γ′′

=− ‖γ′′‖2γ′ + 〈γ, γ′〉γ′′.

If r, s : (a, b)→ R are solutions to

(rγ′ + sγ′′)′ = 0, (13)

then the vector field v(t) = r(t)γ′(t) + s(t)γ′′(t) over γ(a, b) is a constant vector. Note
that eq. (13) implies

r′γ′ + s′γ′′ + rγ′′ + s(−‖γ′′‖2γ′ + 〈γ, γ′〉γ′′) = 0.

So that, if γ′ 6= 0 and γ′′ 6= 0, r and s satisfy the following O.D.E system:{
r′(t) = s(t)(〈γ, γ〉 − 〈γ, γ′〉2),
s′(t) = −s(t)〈γ, γ′〉 − r(t). (14)

The associated initial value problem has a unique solution for every fixed pair of
values for r(t0) and s(t0), which can be extended for the whole domain of γ, and any
solution to eq. (14) makes eq. (13) hold. Thus rγ′ + sγ′′ is a constant vector. Further,
if the curve defined by γ is not a straight line or is degenerate to a point, then there
is t0 ∈ (a, b) such that γ′(t0) 6= 0 and γ′′(t0) 6= 0. Letting r(t0) and s(t0) vary makes
v(t0) = r(t0)γ

′(t0) + s(t0)γ
′′(t0) equal to any vector in the plane defined by γ′(t0), γ

′′(t0)
and the origin.

Furthermore v(t) = r(t)γ′(t) + s(t)γ′′(t) = r(t0)γ
′(t0) + s(t0)γ

′′(t0) = v(t0) for all
t ∈ (a, b). Thence the family of v(t) thus obtained spans the same plane for any t. There
are linearly independent vectors in this family, so that γ′(t) can be written as a linear
combination of two vectors of the like, then γ′(t) is always on this plane and curve lies in
a plane.

5 Self-expanders

Let γ : I → R2 be a self-similar expanding solution of the curve shortening flow that
is parametrized by arc length. Then

γ′′ = γ⊥ = γ − 〈γ, γ′〉γ′ (15)

In analogous fashion to the self-shrinking curves one can find:
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Theorem 5.1. A curve C parametrized by γ : I → R2, γ(t) =
√
α(t)(cos(θ(t)), sin(θ(t)))

is a self-expander of the curve shortening flow if, and only if,

1. it is a straight line or

2. α(t) > 0 for all t ∈ I and

α′′ +
(α′)2

2
− 2α = 2,

[θ′]2 =
1− [u′]2

u2
.

Furthermore, calculations analogous to the previous sections, show that the self-expanders
are also necessarily planar:

Theorem 5.2. Every self-expanding solution of the curve shortening flow γ : I → Rn lies
in a plane.
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