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Abstract. The main purpose of this paper is to determine the behavior of the roots of
a kind of trinomial equation that appears in certain financial mathematics problems. In
addition, we present the regions of the complex plane where these roots are located.
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1 Introduction

The trinomial equations of degree n, represented by

P (z) = zn + αzm + β = 0, (1)

with m < n (m and n natural) and α and β real, was studied by important names of
Mathematics, as Lambert [2] and Euler [6], for example. But at the end of the nineteenth
century and beginning of twentieth century ocurred some advances in this area, listed
in the following [8]: Nekrasov, in 1887, determined sectors in the complex plane, where
each sector contained a root of the trinomial equation; Bohl, in 1914, found a method for
calculating the number of roots of a trinomial equation in a given circle in the complex
plane; Herglotz, in 1922, studied the Riemann surfaces that correspond to the trinomial
equations; Egerváry, in 1930, presented a study of results on the arrangements of the roots
of trinomial equations. Recent publications show more specific results about the location
of the zeros of special classes of lacunary polynomials (see, for example, [3]).

For some values of m, α and β, equation (1) is used in some problems of financial
mathematics, related to determine the interest rate of a uniform serie of payment. For
example, considering the number of periods n, the payment PMT and the future value
FV , the interest rate I of a uniform serie of payment is obtained by the equation

PMT =
FV × I

(1 + I)n − 1
. (2)

More details can be found in [1, 9].
A solution of n > 4 can only be obtained by approximation. Actually, computers,

using numerical algorithms, can solve this problem very quickly. But this fact has not
diminished the algebraic beauty of the problem.
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From z = 1 + I, the equation (2) can be rewrite as

zn + αz − (1 + α) = 0, (3)

with α = − FV

PMT
. As FV > PMT , we have α < −1.

In this paper we study the behavior of the roots of equation (3) using classical results
of literature and we determine the number of real and non-real roots. Furthermore, the
location of these roots is established.

2 Preliminary Results

In this section we present classical results of literature that will be used to show the
main results of this paper.

More details of the following result can be found in [7].

Theorem 2.1 (Descartes’ Rule of Signs). Let Z be a number of positive zeros of a poly-
nomial P (z) = a0 + a1z+ . . .+ anz

n and C the number of changes of sign of the sequence
of coefficients. Hence, C − Z ≥ 0 and C − Z is an even number.

The following results can be found in [4, 5].

Theorem 2.2 (Eneström-Kakeya). Let P (z) = a0 + a1z + . . . + anz
n be any polynomial

whose coefficients satisfy
a0 > a1 > . . . > an > 0.

Then P (z) has no zeros for |z| < 1.

Theorem 2.3. Let P (z) = a0 + a1z+ . . .+ anz
n be a complex polynomial and let r be the

unique positive root of equation

f(z) = |an|zn − (|an−1|zn−1 + . . .+ |a1|z + |a0|) = 0.

Then all the zeros of P (z) lie in the circle |z| ≤ r.

3 Main Results

Firstly, observe that z = 1 is root of the equation (3).

Lemma 3.1. About the zeros of P (z) = zn + αz − (1 + α) (α ∈ R, α < −1), we have:

1. for n even, P (z) has two positive zeros and n− 2 non–real zeros;

2. for n odd, P (z) has two positive zeros, one negative zero and n− 3 non–real zeros.

Proof. From Descartes’s rule of signs, P (z) = 0 has zero or two positive roots. As
P (1) = 0, we conclude that P (z) has two positive zeros, z = 1 and z = a. Applying the
Descartes’s rule of signs to P (−z), follows that P (z) has one negative zero for n odd and
P (z) has no negative zero for n even.

Hence, for n even, P (z) has two positive zeros and n−2 non–real zeros and, for n odd,
P (z) has two positive zeros, one negative zero and n−3 non–real zeros. �
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Lemma 3.2. The equation zn + αz − (1 + α) = 0 (α ∈ R, α < −1) can be represented by

P (z) = zn + αz − (1 + α) = (z − 1)Q(z),

where

Q(z) = zn−1 + zn−2 + ...+ z + (1 + α) = (z − a)R(z),

with a 6= 1 the positive zero of P (z) and

R(z) = zn−2+(a+1)zn−3+(a2+a+1)zn−4+ ...+(an−3+ ...+a+1)z+(an−2+ ...+a+1).

Proof. Follows directly by simple manipulations. �

Theorem 3.1. The zeros of P (z) = zn + αz − (1 + α) (α ∈ R, α < −1) lie in

1 ≤ |z| ≤ δ, (4)

where δ is the unique positive zero of

f(z) = zn − (|α|z + |1 + α|).

Proof. The inequality |z| ≥ 1 follows directly from the Eneström-Kakeya Theorem and
Lemma 3.2. The inequality on the right side of (4) is obtained from Theorem 2.3. �

In Theorem 3.1 observe that, for n odd, δ = |s|, where s is the unique negative zero of
P (z).

4 Numerical Examples

For some values of n, FV and PMT , in Table 1 we can see the coefficients and zeros
of P (z) and the interest rate I.

Figs. 1 and 2 display the zeros of P (z) =
553

47
− 600

47
z + z8 and

P (z) =
1561

64
− 1625

64
z + z9, respectively, represented by •. We can observe that the zeros

satisfy the conditions of the results presented in the previous section, where δ = 1.5386 in
the first case and δ = 1.5894 in the second case.

As z = 1 + I, considering z = z8 = 1.1302, we have I = 0.1302 in the first case and, in
the second case, for z = z9 = 1.2463, we have I = 0.2463.

5 Conclusion

In this paper we present properties of the roots of a special class of trinomial equations,
which is very important in some problems of financial mathematics.
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n FV PMT P (z) Zeros of P (z) I (%)

z1 = −1.397− 0.634i,
z2 = −1.397 + 0.634i,
z3 = −0.429− 1.433i,

8 12000,00 940,00 P (z) =
553

47
− 600

47
z + z8 z4 = −0.429 + 1.433i, 13,02

z5 = 0.761− 1.182i,
z6 = 0.761 + 1.182i,

z7 = 1 and z8 = 1.1302

z1 = −1.58945,
z2 = −1.1532− 1.07521i,
z3 = −1.1532 + 1.07521i,

9 6500,00 256,00 P (z) =
1561

64
− 1625

64
z + z9 z4 = −0.103491− 1.53166i, 24,63

z5 = −0.103491 + 1.53166i,
z6 = 0.928277− 1.11355i,
z7 = 0.928277 + 1.11355i,
z8 = 1 and z9 = 1.24627

Table 1: Numerical examples.

Figure 1: Zeros of

P (z) =
553

47
− 600

47
z + z8.

Figure 2: Zeros of

P (z) =
1561

64
− 1625

64
z + z9 .

References
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