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Abstract. We analyze the stabilization and internal exact control for the Kuramoto-
Sivashinsky equation (KS) in a bounded interval. That is, we consider the following equation:

ut + αuxx + βuxxx + ηuxxxx + uux = 0.

The above equation is a model for small amplitude long waves. Using multiplier techniques
we prove the exponential decay of the total energy associated with the KS system and in
the linear case, using HUM method, we study its internal exact controllability.
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1 Introduction

We consider the Kuramoto-Sivashinsky system in a bounded interval (0, L)∣∣∣∣∣∣∣∣∣∣∣∣∣

ut + αuxx + βuxxx + ηuxxxx + uux = 0 in (0, L)× (0,+∞)

u(0, t) = u(L, t) = 0 for all t ≥ 0

ux(0, t) = ux(L, t) = 0 for all t ≥ 0

u(x, 0) = u0 in (0, L).

(1.1)

Where u0 belongs to L2(0, L) and the constant α is a negative real number, η is positive
and β is non null.
The above system is a model for small amplitude long waves.
The equation:

ut + αuxx + βuxxx + ηuxxxx + uux = 0 (1.2)

is known as the Kuramoto-Sivashinsky equation (KS) or as the generalized Kuramoto-
Sivashinsky equation. It is very important in describing physical processes in motion of
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turbulence and other unstable process systems. The coefficients α, β and γ are associa-
ted with instability, dispersion and dissipation effects, respectively. It is used to model
reaction-diffusion systems (see for instance, Kuramoto [5] when β = 0), flame-propagation
and also viscous flow problems (see Sivashinsky [15] when β = 0). Tadmor [16] showed the
Cauchy problem connected to (1.2) when β = 0 is well-posed, thus admitting a unique smo-
oth solution, continuously dependent on its initial data. Uecker and Wierschem [17] stu-
died the spatially periodic KS-equation (equation (1.2) with an aditional term δ(cos(x)u)x)
as a model for inclined film flow over wavy bottoms and other spatially periodic systems
with a long wave instability. They also studied the stability and decay rate of the periodic
solutions for such problem. The additional term δ(cos(x)u)x takes into account the flow
of a viscous liquid film down an inclined plane, driven by gravity, when the bottom plate
is not flat.
Larkin [6] also considered (1.2) in a bounded domain as a model of long waves in a vis-
cous fluid flowing down on an inclined plane. In this paper, he proved that solutions to a
mixed problem for the KdV equation may be obtained as singular limits of solutions to a
corresponding mixed problem for the KS equation. He considered in (1.2), α = η.
In [9], Iosevich and Miller refers to (1.2) as the Kuramoto-Sivashinsky/KdV equation.
They were concerned with the case where the dispersive effects are important (that is,
when the coefficient β is large) and obtained solutions to the KdV equation as the limit of
solutions of (1.2) with high dispersive and dissipative terms. To deal with a production-
dissipation energy balance, Christov and Velarde [2] considered the Korteweg-de-Vries-
Kuramoto-Sivashinsky-Velarde equation (it was added to equation (1.2) an extra nonli-
near term (uux)x). Is this way they were able to incorporate the Marangoni effect into
the one-way long-wave assumption and to model a liquid layer being heated from above
(from the air side).
This paper is devoted to study the decay of the energy, as t → +∞, associated to the
system. (1.1)
In section 2, we begin by studying the linear case, that is when the term uux is null.
We prove global existence and uniqueness and some regularity for solutions. Then using
multipliers techniques, we show the exponential decay of the energy associated to linear
problem and we obtain some observability results. We also prove the internal exact con-
trollability using the HUM method.
In section 3, we study the system (1.1). At first, we prove the existence and uniqueness
of solutions and after we analyze the exponential decay of the energy associated with the
system (1.1). This energy is defined by

E(t) =
1

2

∫ L

0
|u(x, t)|2 dx =

1

2
‖u(t)‖2.

Using the boundary conditions in (1.1) we prove that

dE

dt
= α

∫ L

0
| ux(x, t) |2 dx− η

∫ L

0
| uxx(x, t) |2 dx ≤ 0, ∀t > 0.

We observe that, according to the above energy dissipation law the energy E(t) is a
nonincreasing function of the time. Then, we study the following question:
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Does the energy E(t)→ 0 as t→ +∞ ? Is it possible to find a rate of decay of the energy?
We show that the energy associated to problem (1.1) decays exponentially and this decay
is uniform.

2 The Linear System

In this section we analyze the linear system associated with system (1.1).
In subsection 2.1, we begin by proving existence, uniqueness and regularity of solutions
for the following system:∣∣∣∣∣∣∣∣∣∣∣∣∣

ut + αuxx + βuxxx + ηuxxxx = 0 in (0, L)× (0,+∞)

u(0, t) = u(L, t) = 0 for all t ≥ 0

ux(0, t) = ux(L, t) = 0 for all t ≥ 0

u(x, 0) = u0 in (0, L).

(2.1)

Here u0 belongs to L2(0, L) and the constant α is a negative real number, η is positive
and β is non-null.

2.1 Existence, uniqueness and regularity

We shall use basically semigroups theory to prove the existence and uniqueness and to
prove regularity of solutions we shall consider the multipliers techniques.

Theorem 2.1. (Existence, uniqueness and regularity)
If u0 belongs to L2(0, L), α < 0, η > 0 and β 6= 0, then the problem (2.1) has a unique
solution u belonging to C([0,+∞);L2(0, L)) ∩ L2(0,+∞;H2

0 (0, L)). Moreover,

i) ‖u‖C([0,+∞);L2(0,L)) + ‖u‖L2(0,+∞;H2
0 (0,L))

≤ C‖u0‖.

ii) the energy dissipation law,
dE

dt
= α

∫ L
0 | ux(x, t) |2 dx− η

∫ L
0 | uxx(x, t) |2 dx ≤ 0, ∀t > 0, holds.

Sketch of Proof: Let Av = −αv′′−βv′′′−ηv′′′′ denote the closed linear operator defined
on the domain D(A) = H4(0, L) ∩H2

0 (0, L) ⊂ L2(0, L).
So, using integration by parts and definition of D(A), we can prove that:

(v,Av) = α

∫ L

0
|v′|2 dx− η

∫ L

0
|v′′|2 dx. (2.2)

On the other hand, we see that the adjoint operator A∗ is defined by
A∗w = −αw′′ + βw′′′ − ηw′′′′, where w belongs to D(A∗) = D(A).
So, using integration by parts again, we obtain:

(w,A∗w) =

∫ L

0
w(−αw′′ + βw′′′ − ηw′′′′) dx = α

∫ L

0
|w′|2 dx− η

∫ L

0
|w′|2 dx. (2.3)
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Now, since α < 0 and η > 0, it follows by (2.2) and (2.3) that A and A∗ are dissipative
operators. Therefore, from classical results in semigroup theory (Pazy [11] cor.4.4, chapter
1), we know that A generates a strongly continuous semigroup of contractions in L2(0, L).
Let {S(t)}t≥0 be the semigroup of contractions generated by A, then the mild solution
u(t) = S(t)u0, t ≥ 0 belongs to C([0,+∞);L2(0, L)) and

‖u‖C([0,+∞);L2(0,L)) ≤ ‖u0‖.

To show that u ∈ L2(0,+∞;H2
0 (0, L)) and the energy dissipation law, we first consider

u0 ∈ D(A), then we use multipliers techniques in (2.1) and integrating by parts in (0, L).
Now, by boundary conditions and the density of D(A) in L2(0, L), we prove the item i)
and ii) and so we conclude the theorem.

2.2 Exponential decay of the energy

In this subsection we shall prove the decay of the energy associated to the system (2.1).
As in [10], [18] and [19], we shall use multipliers techniques. The origin of this method
can be found in Zuazua [20], see also Komornik [4].
In view of the energy dissipation law (Theorem 2.1, ii), in order to analyze the rate of
decay of solutions, as t→ +∞, it is natural to study the problem of observability.

Proposition 2.1. (A observability result)
Under the assumptions of Theorem 2.1 we have:
For all L > 0, for all T > 0 and for all u0 ∈ L2(0, L), there exists C1 = C1(L, T, α, η) > 0
such that:

‖u0‖2 ≤ C1

(
−α

∫ T

0

∫ L

0
|ux(x, t)|2 dxdt+ η

∫ T

0

∫ L

0
|uxx(x, t)|2dxdt

)
. (2.4)

it is suffice to prove the following inequality:
For any T > 0, we have

1

2
‖u0‖2 ≤

1

2T

∫ T

0

∫ L

0
|u(x, t)|2 dxdt−α

∫ T

0

∫ L

0
|ux(x, t)|2 dxdt+η

∫ T

0

∫ L

0
|uxx(x, t)|2dxdt

for all finite energy solutions of (2.1)
We consider u0 ∈ D(A) and T > 0, then we multiply the equation in (2.1) by (T − t)u
and integrate on (0, T )× (0, L).
Again, we use integration by parts the boundary conditions and the density of D(A) to
conclude this proposition.
Now, we can to prove the main result of this subsection.

Theorem 2.2. (Exponential decay of the energy associated to linear problem)
There exist c > 0 and µ > 0 such that

E(t) ≤ c‖u0‖2 e−µt

for all t ≥ 0 and all solution of (2.1) with u0 ∈ L2(0, L).
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Proof: By (2.4) we can deduce that there exists a constant C > 0 such that:

E(0) =
1

2
‖u0‖2 ≤ C

(
−α

2

∫ T

0

∫ L

0
|ux(x, t)|2 dxdt+

η

2

∫ T

0

∫ L

0
|uxx(x, t)|2dxdt

)
. (2.5)

So, using Theorem 2.1 and 2.5 we show that:

E(T ) ≤ C

1 + C
E(0).

So, by the semigroup property, the conclusion of Theorem 2.2 follows.

2.3 Internal Exact Controllability

In this subsection we analyze the internal exact controllability problem for the linear KS
system.
We prove the following problem:
Given the initial and final states (u0, uT ) belonging to L2(0, L) × L2(0, L), it is possible
to find a control function h ∈ L2(0, T ;H−2(0, L)) such that the solution v of the below
system satisfies v(x, T ) = uT (x), ∀x ∈ (0, L), ∀T > 0 and ∀L ∈ (0,+∞).∣∣∣∣∣∣∣∣∣∣∣∣∣

vt + αvxx + βvxxx + ηvxxxx = h in (0, L)× (0, T )

v(0, t) = v(L, t) = 0 for all t ∈ (0, T )

vx(0, t) = vx(L, t) = 0 for all t ∈ (0, T )

v(x, 0) = u0 in (0, L).

(2.6)

where α < 0, η > 0 and β 6= 0.
Before to answer this question, we need to show that the above system is well posed.
In fact, it is possible to prove that:

Theorem 2.3. (Existence and uniqueness for system (2.6))
If u0 belongs to L2(0, L), h belongs to L2(0, T ;H−2(0, L)), with α < 0, η > 0 and
β 6= 0, then, for any T > 0, the system (2.6) has a unique weak solution v belonging to
XT = C([0, T ];L2(0, L)) ∩ L2(0, T ;H2

0 (0, L)).

We will give a sketch of the proof of the global existence and uniqueness of solutions.

Consider u0 ≡ 0 and h belonging to L2(0, T ;L2(0, L)).
Let {S(t)}t≥0 be the strongly continuous semigroup of contractions generated by the ope-
rator A defined in the Theorem 2.1. Then applying the standard variation-of-parameters
procedure, we have the mild solution of the problem (2.6).
So, using the density of L2(0, T ;L2(0, L)) in L2(0, T ;H−2(0, L)) and “a priori estimate’
we conclude the theorem.

Theorem 2.4. (The internal exact controllability for system (2.6))
Let L be in (0,+∞), then, for any T > 0 and for any (u0, uT ) ∈ L2(0, L) × L2(0, L), it
exists h ∈ L2(0, T ;H−2(0, L)) such that the solution v of (2.6) satisfies v(·, T ) = uT .
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To prove this Theorem we apply the HUM method (see, for instance Lions [8]) and mul-
tipliers techniques.

3 The KS System(1.1)

In this section we analyze the nonlinear system KS. We begin proving the existence and
uniqueness of the solution and then we show the uniform exponential decay of the energy
associated to the system (1.1).

Theorem 3.1. (Existence and uniqueness for system (1.1))
If u0 belongs to L2(0, L) , α < 0, η > 0 and β 6= 0 then, the problem (1.1) has a unique
solution u belonging to C([0,+∞);L2(0, L)) ∩ L2

loc(0,+∞;H2
0 (0, L)).

We prove the existence and uniqueness of the solution of the system (1.1)using semigroup
theory, fixed point theorem and boundary conditions.

Theorem 3.2. (Exponential decay of the energy associated to problem (1.1))
There exist c > 0 and µ > 0 such that

E(t) ≤ c‖u0‖2 e−µt (3.1)

for all t ≥ 0 and all solution of (1.1) with u0 ∈ L2(0, L).

Since

∫ T

0

∫ L

0
uux u dxdt = 0, we can proceed like in the Theorem 2.2.
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