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Critical set of the Kawahara equation
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Abstract. We characterize the lengths of intervals for which the linear Kawahara equation
has a non-trivial solution, whose energy is stationary. This gives rise to a family of complex
functions. Characterizing the lengths amounts to deciding which members of this family are
entire functions. Our approach is essentially based on determining the existence of certain
Möbius transformation.
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1 Introduction

In the Kawahara equation ut + ux + κuxxx + ηuxxxxx + uux = 0, the conservative
dispersive effect is represented by the term (κuxxx + ηuxxxxx). This equation is a model
for plasma wave, capilarity-gravity water waves and other dispersive phenomena when the
cubic KdV-type equation is weak. Kawahara [6] pointed out that it happens when the
coefficient of the third order derivative in the KdV equation becomes very small or even
zero. It is then necessary to take into account the higher order effect of dispersion in order
to balance the nonlinear effect.

Dispersive problems have been object of intensive research (see, for instance, the classi-
cal paper of Benjamin, Bona and Mahoni [2], Biagioni and Linares [3], Bona and Chen [4],
Menzala et al. [8], Rosier [9], and references therein). Recently global stabilization of the
generalized KdV system have been obtained by Rosier and Zhang [10] and Linares and
Pazoto [7] studied the stabilization of the generalized KdV system with critical exponents.
For the stabilization of global solutions of the Kawahara under the effect of a localized
damping mechanism, see Vasconcellos and Silva [11–13].

We consider the linear Kawahara equation

ut + βux + κuxxx + ηuxxxxx = 0 with (x, t) ∈ (0, L0)× (0,∞), (1)
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where the coefficients β, κ and η are real numbers such that η < 0, κ 6= 0, β ∈ {0, 1}.
Sometimes, while discussing the existence of solutions of certain partial differential equa-
tions, it is necessary to establish when a certain quotient of entire functions still turns out
to be an entire function (see, for instance, Rosier [9], Vasconcellos and Silva [11]).

We have a polynomial p : C→ C and a family of functions

Na : C× (0,∞)→ C,

a ∈ C4 ∼ {0}, whose restriction Na(·, L) is entire for each L > 0. We consider a family of
functions fa(·, L) defined by

Na(ξ, L) = fa(ξ, L) p(ξ) (2)

in its maximal domain. For a given polynomial p(·), the problem of characterizing the set
of values L0 > 0, for which it is possible to find a non null a0 ∈ C4 such that the function
fa0(·, L0) is entire, is a challenging problem and of particular interest of the academic
community.

Vasconcellos and Silva [11, Lemma 2.1] discussed the existence of non-zero solutions
for (1) whose energy is constant over time. Their results show that the existence of such
solutions is equivalent to determining the lengths of interval (0, L0) for which it is possible
to verify that the condition

(∃λ ∈ C, u0 ∈ (H3
0 (0, L0) ∩H5(0, L0),C) ⇒ λu0 + βu′0 + κu′′′0 + ηu′′′′′0 = 0) (3)

is valid. Such condition in turn reduces to the problem of characterizing the set X of
L0 > 0 values, for which exist r and a0 providing that function fa(·, L) is entire for
L = L0 and a = a0. In this case, using (2), fa(·, L) is defined by

Na(ξ, L) = a1iξ − a2iξe−iξL + a3 − a4e−iξL

p(ξ) = r + βξ − κξ3 + ηξ5
(4)

where a = (a1, a2, a3, a4) and r ∈ R. It follows from (3) that λ is a pure imaginary number.
Thus, we only have to consider polynomials p(·) with r ∈ R.

For each r ∈ R and a0 ∈ C4 ∼ {0}, let Xa0r be the set of L0 > 0 values, for which the
function fa(·, L) is entire for L = L0 and a = a0. The set X is the union of Xa0r for r ∈ R
and a0 ∈ C4 ∼ {0}. Here, we place emphasis on the following statements:

(S1) fa0(·, L0) is entire;

(S2) all the zeros, taking the respective multiplicities into account, of the polynomial p
are zeros of Na0(·, L);

(S3) the maximal domain of fa0(·, L0) is C;

which are, clearly, equivalent and will be widely used throughout this article. A closer look
shows that determining the solution to the problem guarantees the existence of a Möbius
transformation in some circumstances. Further, for the function fa(·, L), defined by (2)
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and (4), to be entire, given the equivalence between statements (S1) and (S2), informally,
we must have

a1iξ0 + a3
a2iξ0 + a4

= e−iLξ0 (5)

for each root ξ0 of the polynomial p. We note that for a such that a1a3−a2a4 6= 0, the left
side of (5) suggests that a Möbius transformation is defined. Note that we already have an
indication that for a polynomial p with at least two roots differing by an integer multiple
of 2π/L, we obtain L /∈ X . With this, a method for solving the problem is revealed: we
must verify for which structures of the roots of the polynomial p is it possible to define a
Möbius transformation M that satisfies M(ξ0) = e−iLξ0 for each zero ξ0 of polynomial p.

Taking (5), it is essential to define, for each non null a ∈ C4, the discriminant of a,
specifically, the complex number d(a) = a1a4 − a2a3. It is natural, however, to consider:
(i) d(a) = 0 or (ii) d(a) 6= 0.

The main result shown in this article guarantees that the existence of pairs (a0, L0)
that make fa(·, L) entire is intimately linked to whether or not the discriminant is zero.
In fact, when the discriminant of a is zero, such pairs do not exist for any r ∈ R. On
the other hand, if the discriminant of a is non-zero, we identify situations where the pairs
(a0, L0) can exist or not. Whereas case (i) has been completely solved here, in case (ii)
there are situations where the problem remains to be solved, i.e., in some cases, we do not
know whether or not it is possible to satisfy (5). As far as we know, Rosier [9] was the first
to analyze these kinds of problems. In fact, he showed that the existence of non-trivial
solutions for the Kortweg de Vries equation, whose energies do not decay over time, is
equivalent to determining the set U of values l0 > 0, for which there exists a non null
k0 ∈ C2 and s ∈ C, so that the function gk(·, L) with k = (k1, k2), defined by

Mk(ξ, l) = gk(ξ, l) q(ξ), (6)

is entire for k = k0 and l = l0. Here, in particular, Mk(ξ, l) = k1 − k2e−iLξ and q(ξ) =
ξ3 − ξ + s. Then Rosier [9] proves that

U =
{

2π

√
m2 +mn+ n2

3
: n,m ∈ N

}
.

Let us take case (i) from the same starting point as Rosier [9], i.e., the analysis of zeros of
Na(·, L). Here, it makes no sense to argue about the existence of a Möbius transformation.
Case (ii) is completely based on equation (5). Our strategy is quite efficient. It proved
to be efficient in this situation, where using previously established results, such as the
Weierstrass factorization theorem, is not possible.

Notice that, for each choice of the coefficients β, κ and η, condition (3) associates the
Kawahara equation ut + βux + κuxxx + ηuxxxxx = 0 to a family of polynomials p(ξ) =
r + βξ − κξ3 + ηξ5, r ∈ R.

Let X be the set of the lengths of interval (0, L0) for which exist non-zero solutions for
(1) whose energy is constant over time. Consider for each r ∈ R and a ∈ C4 ∼ {0}, the
set Xar of values L0 > 0 for which the function fa(·, L) defined by (2) and (4) is entire for
L = L0. We can decompose X as the union of the sets Xar for r ∈ R and non null a ∈ C4
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We extend the results obtained by Vasconcellos and Silva [11, 12] for characterizing
the set X for the Kawahara equation (1). They have partially analyzed the case κ = 0
in (1) and did not deal with the case κ = 1 in (1). In our proof, we argue by exhaustion
characterizing the sets Xar. In Part (I) of Theorem 1.1, we see that if d(a) = 0, then
Xar = ∅ for all r ∈ R. As a consequence of this result, it follows that for any Kawahara
equation (1), the set X is given by the union of the set Xar for r ∈ R and d(a) 6= 0. Our
results for d(a) 6= 0 allow to partially describe the set X for Kawahara equations (1) with
β = 1 and κ 6= 0 or β = 0 and κ < 0. For Kawahara equations (1) with β = 0, κ > 0, as
a consequence of Theorem 1.1, we obtain that X is empty.

Now we summarize the results obtained in this article in the following theorem guided
by the roots of polynomial p, as we will shortly see.

Theorem 1.1. Let r ∈ R, a non null a ∈ C4 and L > 0, and consider the function fa(·, L)
defined by the product

Na(ξ, L) = fa(ξ, L) p(ξ) (7)

in its maximal domain. Let us suppose that Na(ξ, L) and p(ξ) are as in (4). Let Xar be
the set of values L0 > 0 for which the function fa(·, L) defined by (7) is entire for L = L0.

(I) If L0 > 0 is such that fa0(·, L0) is entire for some non null a0 ∈ C4, then d(a0) 6= 0.
In other words, for any non null a, if d(a) = 0, we obtain Xar = ∅, for any r ∈ R. The
reciprocal, however, is false.

(II) If a is such that d(a) 6= 0 and one of following three items occurs:

(a) β = 1 and |r| > z − κz3 + ηz5, where z =

√
3κ−
√

9κ2−20η
10η ;

(b) β = 0, κ > 0 and r ∈ R;

(c) β = 0, κ < 0 and |r| > −κz3 + ηz5, where z =
√

3κ
5η .

Then there is no L > 0 that renders the function fa(·, L) entire. Therefore, Xar = ∅.
(III)

(a) If β = 1 and r = 0, then there exist L0 > 0 and non null a0 such that fa0(·, L0) is
entire if and only if

L0 ∈
{
L ∈ R, k cotanh

(Lk
2

)
= −ρ cot

(Lρ
2

)}
where

ρ =

√
κ−

√
κ2 − 4η

2η
and k =

√√√√∣∣∣∣∣κ+
√
κ2 − 4η

2η

∣∣∣∣∣.
(b) If β = 0, κ < 0 and r = 0, then there exist L0 > 0 and non null a0 such that

fa0(·, L0) is entire if and only if

L0 ∈
{
L > 0, tan

ρL

2
=
ρL

2

}
,

where ρ =
√
κ/η.
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The sets in (a) and (b) are enumerable.

The knowledge of the zeros of gk(ξ, l) in (6) plays a key role in the Rosier’s analysis
of the existence of non-trivial solutions for the Kortweg de Vries equation, whose energies
do not decay over time. The function fa(ξ, L) related to Kawahara equation does not
resemble this fact and its structure together with the order of the polynomial turn the
analysis of the Kawahara case into a hard problem. Many other authors have made efforts
to tackle this problem (see for instance, Glass and Guerrero [5], for a particular case of
(III)(b); Araruna, Capistrano-Filho and Doronin [1], for an example of a critical set). Our
results take their contributions into account. We show they can be presented and obtained
in a systematic way and we go a step further.

2 Auxiliary results

We establish some lemmas needed for proving the three parts of Theorem 1.1.

Part (I)

The main idea behind Part (I) of Theorem 1.1 is to find out whether there is at least
one zero of polynomial p that is not a zero of Na(·, L). The following lemma is a decisive
factor in obtaining this result.

Lemma 2.1. Let non null a ∈ C4 with d(a) = 0 and L > 0. Then the set of the imaginary
parts of the zeros of Na(·, L) has at most two elements.

Part (II)

The following lemma essentially states that if the polynomial p has “too many” complex
roots, equation (5) cannot be satisfied.

Lemma 2.2. For any L > 0, there is no Möbius transformation M such that

M(ξ) = e−iLξ, ξ ∈ {ξ1, ξ2, ξ1, ξ2}

with ξ1, ξ2, ξ1, ξ2 all distinct in C.

Part (III)

Lemma 2.3 below, unlike Lemma 2.2, guarantees the existence of a Möbius transfor-
mation in a case when the polynomial p has exactly three real roots whose multiplicities
are equal to 1. Lemma 2.5 below guarantees the existence of a Möbius transformation
when all roots of polynomial p are real.

Lemma 2.3. Let L, k and ρ be real numbers with L > 0 and k 6= 0. There is a unique
Möbius transformation M which satisfies M(0) = 1, M(±ρ) = e∓iLρ and M(±ik) = e±Lk

if and only if the following equality occurs

k cotanh
(Lk

2

)
= −ρ cot

(Lρ
2

)
.
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Lemma 2.4. Let k and ρ be real numbers with k 6= 0. The positive solutions of the
equation

k cotanh
(Lk

2

)
= −ρ cot

(Lρ
2

)
form a countable set.

Lemma 2.5. Consider the family of functions fa(·, L) defined by (4) and let us suppose
that r = β = 0. Let Xar be the set of values L0 > 0 for which the function fa(·, L) is entire
for L = L0.

1. If κ < 0, there exist L0 > 0 and non null a0 such that fa0(·, L0) is entire if and only
if

L0 ∈
{
L > 0, tan

ρL

2
=
ρL

2

}
where ρ =

√
κ/η.

2. If κ > 0, then fa(·, L) is not entire for any non null a and L > 0. That is, Xa0 = ∅.

2.1 Describing the roots

We also need a lemma that separates the roots of the polynomial p(ξ) = r + βξ −
κξ3 + ηξ5 (where r, β, κ and η are real such that β ∈ {0, 1}, κ 6= 0 and η < 0) into groups
according to their algebraic structure. To characterize a group, we consider the quantity
of real roots and their respective multiplicities. It is worth noting that for each polynomial
p, the relation of its roots with these groups determines whether or not a solution exists
for the problem of determining an entire member of family fa(·, L).

3 Final Remarks

It is worth noting that when d(a) = 0, the sets Xar were completely characterized for
any r ∈ R. The same happens when we consider d(a) 6= 0, β = 0, κ > 0 and r ∈ R; i.e.,
when p(ξ) = r − κξ3 + ηξ5. In particular, in this case, Theorem 1.1 tells us that the sets
Xar are empty for all non null a ∈ C4 and r ∈ R. Thus the set X is empty and the problem
of the initial and boundary value, analyzed by Vasconcellos and Silva [11] and associated
with the linear Kawahara equation ut + κuxxx + ηuxxxxx = 0, does not admit non-trivial
solutions whose energies do not decay over time. Note that for p(ξ) = r+ βξ − κξ3 + ηξ5,
the case d(a) 6= 0 remains to be solved in two situations: (a) when r 6= 0 and p has exactly
three real roots, with all the multiplicities being equal to 1 and (b) p has exactly three
real roots with one of them having a multiplicity of 2.
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