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Centro de Matemática Computação e Cognição, UFABC, Santo André, São Paulo, SP
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Abstract. In 2012, Lima and Llibre in [3] have studied a class of planar continuous piecewise
linear vector fields with three zones. This class can be separated in four other classes and
they proved, using the Poincaré map, that this particular class admits always a unique
hyperbolic limit cycle. Here, we extended this study for other classes. We proved that some
of them also admit always a unique hyperbolic limit cycle, moreover, we find a class that
does not have limit cycles and prove the appearance of two limit cycles with one of these
cycles appear by perturbations of a period annulus.
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1 Introduction

We know that, in the qualitative theory of differential systems, the study of limit cycles
is one of the most important and studied problem. The maximum number, stability and
position of limit cycles are the problems focused, see for instance [8].

In the piecewise continuous context this problem has been studied by many authors
and numerous applications can be cited, see for instance [2], [6] and [1].

In this context, specially for piecewise linear differential systems, many works have
been developed. Most of them obtaining results on the existence and uniqueness of limit
cycles for systems with only one curve of discontinuity. For systems with more then
one curve of discontinuity not many works are available and, more important than this,
recently (see [7]) an example with more then one limit cycle could be obtained for a special
class of Liénard piecewise linear differential system with two curves of discontinuity.

In this paper we improve the results of [3] considering cases not covered and provide
a family of piecewise linear differential systems with at least two limit cycles. We observe
that the bifurcation that give rise to the second limit cycle is very close to the one that
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appear in [7], namely, one limit cycle visiting the three zones and the second limit cycle
visiting two zones and that bifurcates of a period annulus.

2 Definitions and Notations

Consider the plane R
2 divided in three closed regions R−, Ro and R+ which frontier

are given by two parallel straight lines L− and L+ symmetric with respect to the origin
such that (0, 0) ∈ Ro and the regions R− and R+ have as boundary the respective straight
lines L− and L+.

Consider the family of differential systems

x′ =







A−x+B− x ∈ R−,

Aox+Bo x ∈ Ro,

A+x+B+ x ∈ R+,

(1)

that are continuous piecewise linear differential systems with tree zones where x = (x, y) ∈

R
2, Ai ∈ M2(R), Bi ∈ R

2, i ∈ {−, o,+}, and x′ =
dx

dt
with t the time.

Let Xi = Aix+Bi, i ∈ {−, o,+}, the linear vector fields given in (1). We say that the
vector field Xi has a real equilibrium x∗ in Ri with i ∈ {−, o,+} if x∗ is an equilibrium of
Xi and x∗ ∈ Ri. Otherwise, we will say that Xi has a virtual equilibrium x∗ in Rc

i if x
∗ is

an equilibrium of Xi and x∗ ∈ Rc
i , where Rc

i denotes the complementary of Ri in R
2.

We denote by di the determinant of the matrix Ai, by ti its trace and by γi =
αi

βi
,

for i ∈ {−, o,+} where αi and βi are respectively the real and imaginary parts of the
eigenvalues of Ai. Furthermore, we assume the following hypothesis:

(H1) Xo has a focus.

(H2) The others equilibria of X− and X+ are a center and a focus with
different stability with respect to the focus of Xo.

The main results of this paper are the following.

Theorem 2.1. Assume that system (1) satisfies assumptions (H1), (H2).

1. If Xo has a virtual focus and X+ (respectively X−) has a real center. Then system
(1) has a unique limit cycle, which is hyperbolic.

2. If Xo has a real focus at the boundary of Ro. Then system (1) has a unique limit
cycle, which is hyperbolic. Except when the focus of Xo belongs to L+ (respectively
L−) and X+ (respectively X−) also has a focus and both foci give rise to a center
for system (1). In this case system (1) has no limit cycles.

Theorem 2.2. Assume that system (1) satisfies assumptions (H1), (H2) and Xo has a
real focus at the boundary of Ro. If the focus of Xo belongs to L+ (respectively L−) and
X+ (respectively X−) also has a focus at the same point of L+ (respectively L−) and both
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the foci give rise to a center for system (1), then at least two limit cycles can appear by
small perturbations of the parameters of system (1).

3 Normal Form and Poincaré Map

The following result, proved in [3], give us a convenient normal form to write system
(1) with the number of parameters reduced.

Lemma 3.1. Suppose that system (1) is such that do > 0. Then there exists a linear change
of coordinates that writes system (1) into the form ẋ = X(x), with L− = {x = −1},
L+ = {x = 1}, R− = {(x, y) ∈ R

2; x ≤ −1}, Ro = {(x, y) ∈ R
2; −1 ≤ x ≤ 1},

R+ = {(x, y) ∈ R
2; x ≥ 1} and

X(x) =







A−x+B− x ∈ R−,

Aox+Bo x ∈ Ro,

A+x+B+ x ∈ R+,

(2)

where A− =

(

a11 −1
1− b2 + d2 a1

)

, B− =

(

a11
d2

)

, Ao =

(

0 −1
1 a1

)

, Bo =

(

0
b2

)

,

A+ =

(

c11 −1
1 + b2 − f2 a1

)

and B+ =

(

−c11
f2

)

. The dot denotes derivative with respect

to a new time s.

We will rewrite the problem of finding limit cycles that visit the three zones Ri, i ∈
{−, o,+} or even only two of them in terms of finding the fixed points of an appropriated
Poincaré return map. These Poincaré maps will be defined in the transversal sections LO

± =
{(±1, y); y ≥ 0} and LI

± = {(±1, y); y ≤ 0}, and we will do a convenient parametrization
in the transversal sections LO

± and LI
± assuming b2 6= ±1.

We parametrize LO
− by the parameter c defined as follows. Let p− = (−1, 0) be the

contact point of X− with L− and ṗ− = X−(p−) = (0, b2−1). Given, p ∈ LO
− we take c ≥ 0

as the unique non-negative real satisfying p = p− − cṗ−.

Analogously, we parametrize LI
− by the parameter d, LO

+ by the parameter b and LI
+

by the parameter a.

For study the limit cycles of system (2) that visit the three zones Ri, i ∈ {−, o,+},
the Poincaré return map Π is defined on LO

−, this map involves all the vector fields Xi,
i ∈ {−, o,+}, and has the form

Π = π̄o ◦ π+ ◦ πo ◦ π−,

where the Poincaré maps π̄o, π+, πo, and π− are defined by the respective flows and
π̄o : L

O
+ → LO

−, π+ : LI
+ → LO

+, πo : L
I
− → LI

+, and π− : LO
− → LI

−.

Now the study of Π, corresponds to study qualitative behavior of each one of these
maps π̄o, π+, πo, and π−.
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4 Proof of Theorem 2.1

Part 1.

Following the notations of previous section, we have that γ+ = 0 and γ−, γo 6= 0, then
we suppose γo > 0 and γ− < 0. The case γo < 0 and γ− > 0 is analogous.

By Propositions 5 and 6 of [4], the first return map Π : [0,+∞) → [c∗,+∞) is well
defined, where c∗ = Π(0) > 0 and by Propositions 2, 4 and 6 of [4], π+ is the identity map
and we have

Π′(c) = π̄′

o(πo(π−(c))) · π
′

o(π−(c)) · π
′

−(c) =
c

Π(c)
e2[γo(τ̄o+τo)+γ

−
τ
−
].

with τ− ∈ (0, π) increasing with c, and τ̄o + τo ∈ (0, π) decreasing with c. So γo(τ̄o + τo) +
γ−τ− is a decreasing function in c and γo(τ̄o + τo) + γ−τ− → γ−π < 0 when c → ∞.

Consider the function h(c) = Π(c)− c. By Propositions 4,5 and 6 of [4],

lim
c→∞

Π′(c) = eγ−π.

Hence lim
c→∞

h′(c) = eγ−π − 1 < 0 and by Mean Value Theorem lim
c→∞

h(c) = −∞. Therefore

as h(0) > 0 it follows that h has a zero, i.e. Π has a fixed point cs. Then

Π′(cs) = e2[γo(τ̄o+τo)+γ
−
τ
−
]. (3)

As Π(0) > 0 we have that Π′(cs) ≤ 1, i.e., cs is hyperbolic.

Now if we suppose there exist another fixed point cr. As Π
′(cs) ≤ 1, using the mono-

tonicity of the function γo(τ̄o + τo) + γ−τ−, the possibilities of signals to the functions
γo(τ̄os + τos) + γ−τ−s and γo(τ̄or + τor) + γ−τ−r and Mean Value Theorem, we guarantee
this is not possible.

Part 2

We assume b2 = −1 and distinguish two cases, when X+ has a center and X− a focus
or when X+ has a focus and X− a center. In the first case, the proof is analogous to proof
of part 1.

In the second case, we denote by a∗+ = (π+)
−1(b∗o) and π̃o(b

∗
o) = a∗o. We distinguish

three cases a∗+ < a∗o, a
∗
+ > a∗o and a∗+ = a∗o. Firstly, in all cases it is not possible to

have a limit cycle that visit only the regions Ro and R+ because a closed orbit that visit
these two regions correspond to fixed points of the map Π : (0, a∗+] → (0, a∗+] given by

Π(b) = π̃o ◦ π+(b) = be(γo + γ+)π, i. e., γo = −γ+ and Π = π̃ ◦ π+ is the identity map.
Therefore, in the cases a∗+ < a∗o and a∗+ > a∗o we have no limit cycles visiting only the
regions Ro and R+ and in the case a∗+ = a∗o we have a continuous of closed orbits.

Now study the existence of limit cycles that visit the three zones in the cases a∗+ < a∗o
and a∗+ > a∗o are analogous to proof of part 1.

For the case a∗+ = a∗o, we have, Π′(c) =
c

Π(c)
e2γ+[π−(τ̄o+τo)], with τ̄o + τo ∈ (0, π]

decreasing with c. So γ+[π− (τ̄o+ τo)] is a decreasing function in c and γ+[π− (τ̄o+ τo)] →
γ+π < 0 when c → ∞.
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Now the derivatives of Π at 0 give us Π′(0) = 1 and Π′′(0) =
4γ+
3βo

< 0. If cs be the

smallest nonzero fixed point of Π, as Π′(0) = 1, we have Π(c) < c for all c ∈ (0, cs).
Therefore γ+[π − (τ̄os + τos)] ≥ 0, but this is not possible, because γ+[π − (τ̄o + τo)] is
decreasing and null in zero, i.e. there not exist nonzero fixed point for Π in this case.

5 Proof of Theorem 2.2

We will assume that b2 ≤ −1 and X+ has a real focus, then X− has a virtual center
and Xo has either a virtual focus (when b2 < −1) or a real focus at (1, 0) (when b2 = −1),
thus γ− = 0 and γ+γo < 0.

Denote by a∗o = πo(0), b
∗
o = π̄−1

o (0) and a∗+ = π+(0). Hence, the orbits of the periodic
annuls are broken and give us the four possible phase portraits described in the Figures 1
and 2, with a+o = π−1

+ (b∗o).
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Figure 1: Phase portraits when the periodic annulus is broken and γ+ < 0.
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Figure 2: Phase portraits when the periodic annulus is broken and γ+ > 0.

We will consider the Poincaré maps defined in two and three zones respectively and
study the sign of the displacement function

a∗o − a+o .
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If γo > 0, γ∗+ < 0 and γo + γ∗+ > 0, then a∗o − a+o > 0, so we have the case showed in
Figure 1 (a). The orbit of system (2) by the point associated to a+o , spirals toward the
focus of X+ when t → −∞. But the focus of X+ is an attractor, then there is at least
a limit cycle in two zones that pass by a point of LI

+ between a∗+ and a+o . Moreover this
limit cycle is repeller.

In the three zones of Figure 1 (a), we consider the Poincaré map Π : [0,∞) → [0,∞)
given by Π = π̄o ◦ π+ ◦ πo ◦ π−. We have that π− is identity and

lim
c→+∞

Π′(c) = eγ+π. (4)

As γ∗+ < 0, so γ+ < 0 for |b2 + 1| small enough and Π is decreasing in a neighborhood
of infinity, i.e. the infinity is a repeller to system (2). On the other hand, the orbit Γ(t)
spirals moving away from the focus. Therefore we have at least a limit cycle in the three
zones.

Now if γo < 0, γ∗+ > 0 and γo + γ∗+ < 0, we have a∗o − a+o < 0, i.e. we have the case
showed in Figure 2 (b). Therefore, similar the previous case, there is at least a limit cycle
in two zones that pass by a point of LO

+ between a∗+ and b∗o, which is attractor.

Now, for Figure 2 (b), for equation 4 and using that γ∗+ > 0, we have that the infinity
is an attractor to system (2) and as in the previous case we have at least a limit cycle in
the three zones.
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