A supnorm estimate for one-dimensional porous medium equations with advection

Juliana S. Ziebell1
Instituto de Matemática, Estatística e Física, FURG, Santo Antônio da Patrulha, RS
Lucinéia Fabris2
Coordenadoria Acadêmica, UFSM, Cachoeira do Sul, RS
Janaína P. Zingano3
Instituto de Matemática, UFRGS, Porto Alegre, RS
Linéia Schütz4
Instituto de Matemática, UFRGS, Porto Alegre, RS

\textbf{Abstract.} We give a short derivation of supnorm estimates for solutions of one-dimensional porous medium equations of the form
\[u_t + (f(t,u))_x = (|u|^\alpha u_x)_x, \]
assuming initial data \(u(\cdot, 0) \in L^{p_0}(\mathbb{R}) \cap L^\infty(\mathbb{R}) \) for some \(1 \leq p_0 < \infty \).

\textbf{Key-words.} Porous Medium Equation, Supnorm Estimate, Comparison Theorem

\section{Introduction}

There are a number of physical applications where the porous medium equation describes processes involving fluid flow, heat transfer or diffusion [5]. The porous medium equation without advection is given by
\[\frac{\partial u}{\partial t} = (|u|^{m-1}u)_x + f, \quad m > 1, \]
where \(f = f(x,t) \) is a source term.

Here we consider the following initial-value problem
\[\begin{cases}
 u_t + (f(t,u))_x = (|u|^\alpha u_x)_x, & x \in \mathbb{R}, \quad t > 0, \\
 u(\cdot, 0) = u_0 \in L^{p_0}(\mathbb{R}) \cap L^\infty(\mathbb{R}), & 1 \leq p_0 < \infty,
\end{cases} \]

1julianaziebell@furg.br
2lucineia.fabris@ufsm.br
3jzingano@mat.ufrgs.br
4lineia.schutz@ufrgs.br
where $\alpha \geq 0$ and $f \in C^1([0, \infty) \times \mathbb{R})$ are given. The solutions of (2) are known to be defined for all $t > 0$ and decay as $t \to \infty$ in several spaces. In this work, we derive a supnorm estimate for the solutions of (2) when considering $u(\cdot, 0)$ in $L^p(\mathbb{R})$, $p = p_0 + \alpha/2$. By solution in some interval $[0, T^*)$, $0 < T^* \leq \infty$, we mean a measurable function $u : \mathbb{R} \times [0, T^*) \to \mathbb{R}$ which is bounded in each strip $\mathbb{R} \times [0, T]$, $0 < T < T^*$, and which solves the equation (2) in distributional sense.

2 Preliminary

An important result to obtain a supnorm estimate also for negative solutions is the following Theorem.

Theorem 2.1. (Theorem of comparison:)

Let $u(\cdot, t)$, $v(\cdot, t)$ solutions of the equation (1), with initial value u_0, $v_0 \in L^\infty(\mathbb{R})$, respectively, both defined for $0 < t < T$ and limited in the strip $\mathbb{R} \times [0, T]$. Also, if

$$|f(x, t, u) - f(x, t, v)| \leq K_f(M, T)|u - v|, \quad \forall x \in \mathbb{R}, \forall t, 0 \leq t \leq T,$$

then

$$u_0(x) \leq v_0(x) \text{ a.e. } x \in \mathbb{R} \Rightarrow u(x, t) \leq v(x, t) \forall x \in \mathbb{R},$$

for all t, $0 < t \leq T$.

The proof of this Theorem is in [2].

2.1 Some importants inequalities

The following inequalities will be important throughout this work.

- For any p, q and r such that $0 < p \leq r \leq \infty$, $1 \leq q \leq \infty$:

 $$\|w\|_{L^r(\mathbb{R})} \leq \tilde{K}(r, q, p)\|w\|^{1-\tilde{\theta}}_{L^p(\mathbb{R})}\|w_x\|_{L^q(\mathbb{R})}^{\tilde{\theta}} \forall w \in C^1_0(\mathbb{R}),$$

 where $\tilde{\theta} = \frac{1-p/r}{1+p(1-1/q)}$, $\tilde{K}(r, q, p) = (2\theta)^{-\tilde{\theta}}$ and $\theta = \frac{1}{1+p(1-1/q)}$.

- $\forall \beta_0 > 0$:

 $$\|u\|_{L^\infty(\mathbb{R})} \leq \left(\frac{2 + \beta_0}{4}\right)\|u\|_{L^{\beta_0}(\mathbb{R})}^{1-\theta}\|u_x\|_{L^2(\mathbb{R})}^{\theta},$$

 where $\theta = \frac{1}{1 + \frac{\beta_0}{4}}$.
2.2 Basic Result

Theorem 2.2. If $u(\cdot,t) \in L^\infty_{\text{loc}}([0,T^*), L^\infty(\mathbb{R}))$ solves problem (2) then

1) $u(\cdot,t) \in L^{p_0}(\mathbb{R}) \cap L^\infty(\mathbb{R}) \ \forall \ t$, $0 < t < T^*$

2) $\|u(\cdot,t)\|_{L^q(\mathbb{R})} \leq \|u_0\|_{L^q(\mathbb{R})} \ \forall \ t$, $0 < t < T^*$ ($\forall \ q, \ p_0 \leq q \leq \infty$)

3) $\|u(\cdot,t)\|_{L^q(\mathbb{R})} \leq \|u(\cdot,t_0)\|_{L^q(\mathbb{R})} \ \forall \ t_0 < t < T^*$, $\forall \ q, \ p_0 \leq q \leq \infty$.

Proof of (1). For simplicity, we will consider the case of positive solutions, which are known to be smooth. Let $\zeta \in C^2(\mathbb{R})$ be such that $\zeta(x) = 1 \ \forall \ |x| \leq 1$, $\zeta(x) = 0 \ \forall \ |x| \geq 2$, $0 \leq \zeta(x) \leq 1 \ \forall \ x \in \mathbb{R}$. Given $R > 0$, let ζ_R be the cut-off function given by $\zeta_R(x) = \zeta\left(\frac{x}{R}\right)$.

Let $p_0 \leq q < \infty$. Multipliyng the PDE at the initial value problem (2) by $q u^{q-1} \zeta_R(x)$ we have

$$\frac{\partial}{\partial t} u^q \zeta_R(x) + f(t,u)x u^{q-1} \zeta_R(x) = q u^{q-1}(u^\alpha u_x) \zeta_R(x).$$

Integrating on $\mathbb{R} \times [0,t]$, we get

$$\int_{|x|<2R} u(x,t) \zeta_R(x) dx + q(q-1) \int_0^t \int_{|x|<2R} u^{q+\alpha-2} u_x^2 \zeta_R(x) dx d\tau = \int_{|x|<2R} u_0(x)^q \zeta_R(x) dx + \frac{q}{q+\alpha} \int_0^t \int_{|x|<2R} u^{q+\alpha} \zeta_R''(x) dx d\tau - \int_0^t \int_{|x|<2R} f(t,u) x u^{q-1} \zeta_R(x) dx d\tau.$$

Next, integrating by parts and then, letting $R \to \infty$, we get the result.

Proof of (2) and (3). Again, we consider the simpler case of positive solutions. Defining $F(t,U) = \int_0^U f(t,v) v^{q-1} dv$, then equation (4) can be written as

$$\int_{|x|<2R} u(x,t) \zeta_R(x) dx + q(q-1) \int_0^t \int_{|x|<2R} u^{q+\alpha-2} u_x^2 \zeta_R(x) dx d\tau = \int_{|x|<2R} u_0(x)^q \zeta_R(x) dx + \frac{q}{q+\alpha} \int_0^t \int_{|x|<2R} u^{q+\alpha} \zeta_R''(x) dx d\tau + q \int_0^t \int_{|x|<2R} F(t,u) \zeta_R'(x) dx d\tau.$$

Observe that

$$\int_0^t \int_{R<|x|<2R} F(t,u) \zeta_R'(x) dx d\tau \leq \int_0^t \int_{R<|x|<2R} |F(t,u)| |\zeta_R'(x)| dx d\tau \leq \frac{M}{R} \int_0^t \int_{R<|x|<2R} |u(x,\tau)|^q dx d\tau \to 0,$$

when $R \to \infty$, where M is a constant. Then

$$\int_R u(x,t) dx \leq \int_R u(x,t)^q dx + q(q-1) \int_0^t \int_R u(x,\tau)^{q+\alpha-2} u_x^2 dx d\tau \leq \int_R u_0(x)^q dx.$$
Therefore, we get
\[\|u(\cdot,t)\|_{L^q(\mathbb{R})} \leq \|u_0\|_{L^q(\mathbb{R})} \quad \forall q, \quad p_0 \leq q < \infty, \quad \forall t, \quad 0 < t < T^*, \]
and
\[\|u(\cdot,t)\|_{L^\infty(\mathbb{R})} \leq \|u_0\|_{L^\infty(\mathbb{R})} \quad \forall t, \quad 0 < t < T^*. \]
as claimed. In particular, solutions of the initial-value problem (2) are globally defined (i.e., \(T^* = \infty\)).

3 Main Theorems

Theorem 3.1. If \(u(\cdot,t) \in L^\infty_{loc}([0,\infty), L^\infty(\mathbb{R}))\) solves problem (2) with \(u_0 > 0\), then
\[\|u(\cdot,t)\|_{L^\infty(\mathbb{R})} \leq K(\alpha, p_0)\|u(\cdot,t_0)\|_{L^p_0(\mathbb{R})}^{2p_0/(\alpha+q)}(t - t_0)^{-\frac{1}{\alpha+q}}, \quad \forall t, \quad 0 \leq t_0 < t, \]
where \(K(\alpha, p_0)\) is a constant that only depends on \(\alpha\) and \(p_0\).

Proof. Let \(\psi \in C^1(\mathbb{R})\) be monotonically increasing such that \(\psi(u) = 1 \quad \forall u \geq 1, \quad \psi(0) = 0\) and \(\psi(u) = -1, \quad \forall u \leq -1\). Taking \(\delta > 0\), let us define \(\psi_\delta(u) = \psi(\frac{u}{\delta})\) and \(\phi_\delta(u) = L_\delta(u)^q, \quad q \geq 2\), where \(L_\delta(u) = \int_0^u \psi_\delta(v)dv, \quad L_\delta \in C^2(\mathbb{R})\). Let \(\gamma > 0\). Multiplying the equation in (2) above by \((t - t_0)^\gamma \phi_\delta(u)\) and integrating in \(\mathbb{R} \times [t_0, t]\), we get
\[\int_{t_0}^t \int_{\mathbb{R}} (\tau - t_0)^\gamma \phi_\delta'(u(x, \tau))(u(x, \tau), v(x, \tau))dx d\tau + \int_{t_0}^t \int_{\mathbb{R}} (t - t_0)^\gamma \phi_\delta(u(x, \tau))(f(\tau, u))x dx d\tau \]
\[= \int_{t_0}^t \int_{\mathbb{R}} (\tau - t_0)^\gamma \phi_\delta(u(x, \tau))(|u|^\alpha u_x) dx d\tau \]
By Fubini’s theorem, integrating by parts, using an appropriate cut-off function and taking \(\delta \to 0\), this gives
\[(t - t_0)^\gamma \|u(x, t)\|_{L^q(\mathbb{R})}^q + q(q - 1)\int_{t_0}^t (\tau - t_0)^\gamma \int_{\mathbb{R}} |u(x, \tau)|^{\alpha + q - 2}(u_x)^2 dx d\tau \]
\[\leq \gamma \int_{t_0}^t (\tau - t_0)^{-1}\|u(x, \tau)\|_{L^q(\mathbb{R})}^q d\tau \]
Introducing
\[v^q(x, t) := \begin{cases} u(x, t) & \text{se } \sigma = \alpha + q = 2, \\ |u(x, t)|^{\sigma/2} & \sigma = \alpha + q > 2, \end{cases} \]
we then have
\[(t - t_0)^\gamma \|v^q(\cdot, t)\|_{L^{2q/\sigma}(\mathbb{R})}^{2q/\sigma} + \frac{4q(q - 1)}{(\alpha + q)^2} \int_{t_0}^t (\tau - t_0)^\gamma \|v^q(\cdot, \tau)\|_{L^{2q/\sigma}(\mathbb{R})}^{2q/\sigma} d\tau \]
\[\leq \gamma \int_{t_0}^t (\tau - t_0)^{-1}\|v^q(\cdot, \tau)\|_{L^{2q/\sigma}(\mathbb{R})}^{2q/\sigma} d\tau \]
Using Hölder, Nirenberg-Sobolev-Gagliardo II (5), with \(\beta_0 = 2q/\sigma \) and \(q = 2p_0 \), and Nirenberg-Sobolev-Gagliardo I (4) inequalities, we obtain the supnorm estimate (6).

Let \(w(\cdot,t) \) be the solution of (2) with initial condition \(w_0 = w_0^+ + \epsilon \zeta \) for some \(\epsilon > 0 \), where \(w_0^+ \) denotes the positive part of \(w_0 \) and \(\zeta \in C^0(\mathbb{R}) \cap L^{p_0}(\mathbb{R}) \cap L^\infty(\mathbb{R}) \). That is, \(w_0 \geq u_0 \). Then, by the Theorem of Comparison (2.1), \(u(\cdot,t) \leq w(\cdot,t) \), for all \(0 \leq t < T \) and

\[
\|w(\cdot,t)\|_{L^\infty(\mathbb{R})} \leq K(\alpha,p_0)\|w(\cdot,t_0)\|_{L^{p_0}(\mathbb{R})(t-t_0)}^{\frac{2p_0}{\alpha+2p_0}} \|L^{p_0}(\mathbb{R})(t-t_0)^{-\frac{1}{\alpha+2p_0}}, \forall t, 0 \leq t_0 < t, \tag{7}
\]

Now let \(z(\cdot,t) \) be the solution of (2) with initial condition \(z_0 = -u_0^- - \epsilon \zeta \) for some \(\epsilon > 0 \), where \(u_0^- \) denotes the negative part of \(u_0 \). That is, \(z_0 \leq u_0 \). Then, by the Theorem of Comparison (2.1), \(u(\cdot,t) \geq w(\cdot,t) \), for all \(t, 0 \leq t < T \) and

\[
\|z(\cdot,t)\|_{L^\infty(\mathbb{R})} \leq K(\alpha,p_0)\|z(\cdot,t_0)\|_{L^{p_0}(\mathbb{R})(t-t_0)}^{\frac{2p_0}{\alpha+2p_0}} \|L^{p_0}(\mathbb{R})(t-t_0)^{-\frac{1}{\alpha+2p_0}}, \forall t, 0 \leq t_0 < t, \tag{8}
\]

By (7) and (8), we have

\[
\|u(\cdot,t)\|_{L^\infty(\mathbb{R})} \leq K(\alpha,p_0)\max\{\|u_0^+\|, \|u_0^-\|\}^{\frac{2p_0}{\alpha+2p_0}} \|L^{p_0}(\mathbb{R})(t-t_0)^{-\frac{1}{\alpha+2p_0}}, \forall t, 0 \leq t_0 < t.
\]

This proves the following theorem:

Theorem 3.2. If \(u(\cdot,t) \in L^{\infty}_{\text{loc}}(\mathbb{R}, L^\infty(\mathbb{R})) \) solves problem (2), then

\[
\|u(\cdot,t)\|_{L^\infty(\mathbb{R})} \leq K(\alpha,p_0)\max\{\|u_0^+\|, \|u_0^-\|\}^{\frac{2p_0}{\alpha+2p_0}} \|L^{p_0}(\mathbb{R})(t-t_0)^{-\frac{1}{\alpha+2p_0}}, \forall t, 0 \leq t_0 < t,
\]

where \(K(\alpha,p_0) \) is a constant that only depends on \(\alpha \) and \(p_0 \) and \(u_0^+ \) and \(u_0^- \) denote the positive and negative part of \(u_0 \), respectively.

4 Conclusions

We derived a supnorm estimate for the solution of the porous medium equation (2) with no restriction on the sign of \(u_0 \).

Acknowledgments

We thank Prof. Paulo Zingano for comments and fruitful discussions.
References

