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Abstract. This work considers a semilinear integro-differential equation of Volterra type
which interpolates semilinear heat and wave equations. Global existence of solutions is
showed in spaces of Besov type based in Morrey spaces, namely BesovMorrey spaces. Our
initial data is larger than the previous works and our results provide a maximal existence
class for semilinear interpolated heat-wave equation.
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1 Introduction

In this work we consider the semilinear integro-partial differential equation in R"™,
which reads as
up = fot ro(t — $)[P(D)u(s) + f(u(s))]ds, (z € R™ and t > 0) 1)
u(0,2) = ugp(z), z € R

where u(t) = u(t,z) = (ui1(t,z), - ,un(t,z)) with n > 1, 74(t) = vt 1/T'(a), I'(«a)
denotes the gamma function, P(D) = A, is the Laplacian operator on z-variable, v
denotes the Newtonian viscosity and f : R — R is a function satisfying

£(0) =0 and |f(a) — f(b)| < Cla— 0| (lal~" + o7, (2)

here p > 1 and C' is a positive constant independent of a,b € R. Typical examples of
f(u) are given by ~|u|?~!u and v|u|? for v € {+,—}. This nonlinearities yield a scaling
for (1) which is fundamental in our approach on Besov-Morrey spaces, modeled on Besov
space, but with underlying norm is of Morrey type. This spaces have been introduced
by H. Kozono and M. Yamazaki [4] for analysis of the Navier-Stokes equations. As far
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as we know, the problem of existence of solutions to (1) in Besov-Morrey space is new as
1 < a < 2. Formally the problem (1) is equivalent to (FPDE),

Ofu=vP(D)u+ f(u) in (0,00) x R" (3)
ut(0) = 0 and u(0) =wp in R", (4)

where 0f'u = Dg‘lt_lut, U = % and Dg‘|t_1 stands for the Riemann-Liouville derivative

of order a — 1, Dg‘;lu = 1"(21—04)%[5( us) s, (t>0and1 < a < 2) for a suitable

t—s)a—1

u(-,x) € L}, _(R™). Employing a Duhamel-type formula in (3)-(4) (or (1)), formally we

loc
obtain the integral equation

u(t) = La(t)uo + Ba(u)(?), (5)

where
By (u)(t) = /Ot Ly(t —s) (/OS ra—1(s — T)f(u(T))dT> ds (6)

and {L(t)}+>0 stands for convolution operators (or diffusion-wave operator) given by

La()@(€) = Ea(—t12)3(€) (7)

for every Schwartz function ¢ € S(R™). Throughout this paper a mild solution for (3)-
(4) (or (1)) is a function u(t,z) satisfying (5) fol all z € R™, ¢t > 0 and u(t,z) — ug
in §'(R") as t — 0T, actually we showed the weak convergence on homogeneous Besov
space Bﬁéfé’g”. Here E,(—t%£|?) stands for Mittag-Leffler function and = = F stands
for Fourier transform in Schwartz’s space S(R™) which can be extended to tempered
distributions’ spaces 8’'(R™). The operator L, (t) does not satisfy the semigroup property
Lo(t + 8) # Lo(t)La(s) unless if « = 1. In this case, the operator Li(t) = S(t) is the
heat semigroup, because Ey(—t|¢[?) = e~t€” . The kernel k, of L, (t) is the fundamental
solution of ((3) with f = 0) given by

bolt.o) = [ e=Ea(—tlgde.

The FPDE (3)-(4) interpolate two groups of PDEs (see e.g. [2]), namely hyperbolic
(a = 2) and parabolic (&« = 1) PDEs, which have been widely investigated in the last
years. Theses groups presents many differences in theory of the existence and asymptotic
behavior of solutions in scaling invariant spaces. In the case a = 1, the FPDE (3) reduces
to the usual semilinear heat equation which is well documented in singular spaces, see
e.g. [4]. Without making a complete list, we mention the weak-LP spaces, the Besov spaces
B;}OO, the Morrey spaces M), ,, the LP-spaces, the Besov-Morrey spaces N; 11,00 and so on.
However, there are few papers dealing with FPDEs on those spaces. In [3], the authors
based in Mihlin-Hormander’s theorem establish LP-L" estimates to Mittag-LefHler’s family

(7) and local well-posedness is obtained in a L"(R™)-framework. In [5], the authors showed

the existence of self-similar global solution with initial data ug € B},ﬁ {352/ (P=1) Eq(rpo)sr -
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Our initial data ug (see Theorem 3.1) is larger than the previous works and can be

taken as strongly singular function. Indeed, if u =n — pT and A =n — pz—l, we obtain
the continuous inclusions
Sk
LY C weak-L? C M\ C N, o and B CNJ, o (8)
i no_ n=A _ _ L n — nop 2 —n_ 2
prov1dedqf oo = o0+ =5 = k + 7, where o = - = k=7 p_land

1>
1<¢<r<p< @ (all spaces in (8) are invariant by scaling (24)).
The aim of this work is to establish the existence of solutions for (3)-(4) in the frame-
work of Besov-Morrey spaces.
2 Preliminaries

Let D,(xo) be the open ball in R™ centered at xg and with radius » > 0. Give two
parameters 1 < p < oo and 0 < p < n, the Morrey spaces M, , = M, ,,(R") is defined to
be the set of functions f € LP(D,(x)) such that

p i= Sup supr ”Hf”LP (Dy(x0)) < 0 (9)
roER™ r>0

which is a Banach space endowed with norm (9). For s € R and 1 < p < oo, the

homogeneous Sobolev-Morrey space M; , = (—=A)=%/ 2M,, is the Banach space with

norm

17llagg,, = | =272 (10)

Taking p = 1, we have || f||11(p,(2,)) denotes the total variation of f on open ball D;(zo)
and M , stands for space of signed measure s. In particular, M7 o = M is the space of
finite measures. For p > 1, we have M, o = L? and M ; = H; is the well known Sobolev
space. The space L™ corresponds to M, ,,. Morrey and Sobolev-Morrey spaces presents
the following scaling

1FOMpe = A7 1| Fllpe (11)
and

s_n—H
1Ot = A7 L, (12)

where the exponent s — % is called scaling index and s is called regularity index. We
have that

(—A)PMs = ML (13)

Morrey spaces contain Lebesgue and weak-LP, with the same scaling indexes. Precisely,
we have the continuous proper inclusions

LP(R™) & weak-LP(R™) & M, ,(R™) (14)
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where r < p and g = n(1 —r/p). Let S(R") and S’(R™) be the Schwartz space and the
tempered distributions, respectively. Let ¢ € S(R™) be nonnegative radial function such
that

supp(p) C{EER™; S < el <2} and Y (@) =1, forall €0 (15)

j=—00

where ¢;(&) = p(277¢). Let ¢(z) = F(p)(x) and ¢j(z) = F(p;)(z) = 2/"¢(2/x)
where F~! stands for inverse Fourier transform. For 1 < ¢ < 00, 0 < < n and s € R,
the homogeneous Besov-Morrey space Ny, .(R") (N, . for short) is defined to be the set
of u € 8'(R™), modulo the space of polynomials P, such that F~1¢;()Fu € Mg, for all
7 € Z and
1
(Z5ez@l6; +ullgu))” <00, 17 <00
lullag,.. = (16)

q, 1,7

sup;ez 27°(|d; * ullg,. < 0o, r= 0.

In particular N;,o,r = B;T denotes the homogeneous Besov spaces and for 1 < ¢ < p < 00

such that u = n(1—q/p) we obtain N7, . = Ny ., because M, = M{. The space N7, .
is a Banach space and have the real interpolation properties

NS MS1

Qo ( Q1

Mo (17)
and

NS /\/’81 NSQ

Q7 = QT qvu,rz)e,rv

(18)

for all s1 # s2, 0 < 0§ <1 and s = (1 — 6)s; + 0so. Here (X,Y)y, stands for the real
interpolation space between X and Y constructed via the Ky ,-method. Recall that (-,-)g,,
is an exact interpolation functor of exponent 6 on the category of normed spaces.

In the next lemmas, we collect basic facts about Morrey spaces and Besov-Morrey
spaces.

Lemma 2.1. Suppose that s1,s2 € R, 1 < p1,po,p3 <00 and 0 < pu; <mn, t=1,2,3.
(i) (Inclusion) If * B+ = *2E2 and py < py,

0 0
My € Mp, i, and Nm,m,l C Mp, u CN,

P1,M1,00°

(19)

(ii) (Sobolev-type embedding) Let j = 1,2 and pj;,s; be pa < p1, s1 < sa such that sy —
L 24 n;’”, we obtain

b2
M3 © M s (= = po) (20)

and for every 1 <ry <ry < oo, we have

:Sl_

N2 C N and N2 C Boory 7 . (21)

DP2,142,72 P1,M41,71 P2,12,T2 0,72
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(iii) (Holder inequality) Let p% = p% —l-p% and p—;” = p—j + %. If fj € My, p; withj =1,2
then fifo € My, uy and

HflfQHPm,ug < |’f1HPl,#1Hf2HPz,#2' (22)

We performed a scaling analysis in order to choose the correct indexes of spaces such
that their norms are invariant by scaling (23). Indeed, it is well known that if u solves (3)

with f(u) = v|u|’~u then, for each A > 0, the rescaled function uy(t,z) = )\%u(/\%t, Ax)
is also a solution. This led us to define a scaling map for (3) as

u(t, ) — uy(t,x). (23)
Making ¢ — 0% in (23) this map induces the following scaling for initial data ug(z),
o () = uoa(x) = ArTug(Ax). (24)

Let BC((0,00),X) be the class of the bounded functions from (0, 00) into a Banach
space X. We define our ambient spaces based on Besov-Morrey type spaces as follows

XP = {u € BC((0,00); NI‘,’# o) : t"u € BC((0,00); Mg )}, (25)
which endowed with norm

[ull xz := sup [Ju(t, ) lIng,, . +supt”lult, )], (26)
>0 t>0

is a Banach space for (1 <p < ¢ < 00). Heren € Rando < 0,7 =§ <%—%) and o =

% - % having been chosen such that the norm (26) is invariant by scaling map (23).

3 Results

Theorem 3.1 (Well-posedness). Let n > 1 and I1<a<2andletl < {p, p} <q< o,

O<u<nbesuchthat——l —< )and%<

ap a(p 1 p—1"

Then the problem (1) has a mild solution uw € XY which is unique, if u lies in closed

small balls D, C XY | r < 2e. Also, u(t) — ug in the weak—x* topology of BQ/ D
ast— 07",

(1) (Ezistence and uniqueness) Let € > 0 and § = 6(¢) be such that |lugllng, . < 0.

(i) (Continuous dependence on data) Let Ds C Ny, o be closed ball and let u € Xg be
a mild solution associated to data ug € Ds. Then data-solution map ug € Ds —

u € XY is Lipschitz continuous.

We start by recalling an elementary fixed point lemma whose proof can be found in

).

DOI: 10.5540/03.2017.005.01.0032 010032-5 © 2017 SBMAC


http://dx.doi.org/10.5540/03.2017.005.01.0032

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

Lemma 3.1. Let (X, ||-||) be a Banach space and 1 < p < co. Suppose that B : X — X
satisfies B(0) = 0 and

1B(z) = B(2)ll < Kl — 2l ()"~ + [|2]177).
Let R > 0 be the unique positive root of 2° K RF~' —1=0. Given0<e < R andy € X
such that ||y|| < e, there exists a solution x € X for the equation x = y+ B(x) which is the

unique one in the closed ball Dy = {z € X;||z|| < 2e}. Moreover, if |y|| < e and T € Do,
satisfies the equation T =y + B(Z) then

1
2P Ke
The integral equation (5) has the form u = y + B(u,u) on the space X = X} where
y = Lo (t)up and B(u,u) is given by (32). We invoke the Lemma 3.1 in our proof, hence the
estimates for linear and nonlinear part of (5) will be necessary. However, to obtain them
first we need to derive estimates for the Mittage-Leffer convolution operators {Lq () }:>0
on Sobolev-Morrey spaces and Besov-Morrey spaces.

Lemma 3.2. Lets,feR, 1 <a<2, 1<p<g<oo, 0< pu<n, (md(gfs)juz%uf
Lg”<2whereﬁ25.

o= 2l < Ty — 3. (27)

(i) There exists C > 0 such that
_a(g_g)_a(n=p_n—p
ILa(®)fllyp < CEE3EE 50 1y (28)
Jor everyt >0 and f € M; .

(11) Let r € [1,00], there exists C > 0 such that

_Q(f_g)_a(n=p_n—p
|La®fllys, <O FE7EEGET0 ply (29)
for every f € §'/P and t > 0.
(i1i) Let r € [1,00] and 3 > s, there exists C > 0 such that
_a(g_g)_a(n—p_n—p
ILa(®)flly | < O350 fg, (30)

for every f € §'/P.
Lemma 3.3. Under the assumptions of the Theorem 3.1, there exists L > 0 such that
[ La(t)uollxz < Lijuollazg (31)

for all uyg € N¢ Let s = 2/(p — 1), if ug € B we obtain Lo (t)ug — ug in the

Py, 00 " . 00,00

weak—x* topology of BS, .. ast — 0T.

00,00

py00”

Lemma 3.4 (Nonlinear estimate). Under the assumptions of Theorem 3.1. There is a
positive constant K such that

-1 -1
1Ba(w) = Ba(v)llxz < Kllu = vllxz(lulls + v, (32)
for K = Ky + Ko. Moreover, we have By (u)(t) — 0 in the weak—x topology of '24,(50‘1)

ast— 0.
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3.1 Proof of Theorem 3.1

Let 0 < e < R= (1/2°K)”"", where K > 0 and L > 0 are the constants obtained
in Lemma 3.3 and Lemma 3.4, respectively. Let § = ¢/L, the Lemma 3.1 with X = X7
and y = Lq(t)uo yields the existence of an unique global mild solution u € X, such that
|ulx, < e. Moreover, the Lemmas 3.3 and 3.4 yield u(t) — o in the weak—x* topology of

B%f&_l) ast — 0%. The dependence of the initial data can be obtained from Lemma 3.3
and Lemma 3.1. Indeed, let § = L/(t)up where 1ug € N7 then

p7/’ll7w’
_ 1 _
Ju®) —a@)||xr < WHLaU)(UO — o) x,
1

< 1 v Ker1 [[uo — wollng, -
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