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Abstract.

Multivariate statistical approaches have been widely applied to monitoring complex process,
however incipient and small—magnitude faults may not be properly detected with the
above techniques. In this paper, a learning approach based on kernel-PCA with filtering
EWMA-ED is proposed to improve the detection of these types of faults. The proposal was
tested on the Tennessee Eastman (TE) process where it is observed a significant decrease in
the missing alarms, whereas the latency times are reduced.
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1 Introduction

The abnormal event detection is the first crucial point of the fault diagnosis process [2].
With this purpose, many Multivariate Statistical Process Monitoring (MSPM) techniques
as the Hotelling’s T2 statistic and the Squared Prediction Error (SPE) has been intensively
studied [2,4,6]. However, in complex industrial process, some faults have a small effect
on the monitored system and they can be hidden by the effect of disturbances and abrupt
faults; causing lower performances in the fault monitoring process [5,6]. In this paper,
is proposed a learning approach based on kernel-PCA to improve the abnormal event
detection associated with these fault types. The study is performed using the benchmark
Tennessee Eastman (TE) process and all techniques are executed in Matlab®(R2015).
The remaining of the paper is organized as follows. In Section 2, it is described the novel
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EWMA with enhanced dynamic approach. The kernel PCA and the criteria employed for
the adjustment of the kernel parameters are presented in Section 3. The used benchmark
and the performance of fault detection systems are discussed in Section 4. Finally, based
on the analysis of the results, the conclusions are given.

2 EWMA with Enhanced Dynamic Approach.

The Multivariate Statistical Process Monitoring (MSPM) strategies help to maintain
the operations at industrial processes pointing out any anomalies in their behavior [2].
The Exponentially Weighted Moving Averages (EWMA) is a MSPM approach which has
been used as filter of the SPE and Hotelling’s statistics to detect small abnormal changes
in the processes [5]. However, the combined use of this strategy with kernel methods, has
not had high performances to detect incipient and small-magnitude faults.

A possible explanation for such low performance could be associated with an insufficient
depth of EWMA’s memory due to, in practice, achieving a well-adjusted memory in order
to improve the Fault Detection Rates (FDR) without increasing the False Alarm Rates
(FAR) is a difficult task. The EWMA with Enhanced Dynamic (EWMA-ED) herein
developed, improves the detection of small-magnitude faults and it makes easier the setting
of the memory parameter based on the dynamic for the classic SPE and Hotelling’s 72
statistics. The proposed filtering EWMA-ED can be calculated by:

Te=0v> (1—=7)"T+(1-7)T (1)

Jj=1

where T is the current value from an analyzed statistic (SPE or T2 Hotelling) and T, is
the corresponding estimated value, considering the behavior previously observable since
the estimation Y. Note that, in Eq. (1), the proposed approach operates as a low pass
filter where the weights 22:1(1 — )77 geometrically decrease over time. However,
is a constant (0 < 7 < 1) that determines the depth of memory used by the EWMA
approach and ¢ is an enhancer parameter, such that 0 < § - v < 1. Consequentially, in
this proposal, the enhancer factor (§) on EWMA-ED, gives more importance to the most
recent observation (i.e., the current value of the T2 and SPE statistics) without ignoring
the potential information contained in past samples. The EWMA scheme with enhanced
dynamic smooths the behavior of the statistics reducing the difference between the weights
in each sampling. As a result, the depth of memory is expanded and the influence of the
present predicted value is more remarkable without losing sensitivity to small process
shifts. The application of the EWMA-ED approach involves the use of conventional SPE
and Hotelling’s T statistics and they thresholds, which can be calculated by:

g(m* 1)

Tzlim =
m(m — q)

Flgm—q,) (2)

where Fy ,,_q9 is the F-distribution with significance level ¥ and (m — ¢) represents the
freedom degree calculated by a number of retained components ¢ and m samples. The
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threshold for SPE is approximated by

1/ho n
2 -1 ) 2
Tttty =0 o 2

SPEjim = 61 7, 7 ho=1- 302 (3)

j=a+1
3 Kernel Principal Component Analysis

The most disseminated feature extraction technique in the scientific literature is the
Principal Component Analysis (PCA). This technique determines a set of transformation
vectors sorted by the amount of explained variance that guarantees a reduction in the
dimension which is optimal in terms to capture the variability in the information. However,
the main disadvantage of the traditional PCA is its linear nature. [7]. For cases where
exist nonlinear relationships the so-called kernel PCA, was introduced by [10]. KPCA
solves the problems of nonlinearity using the basic idea of Cover’s theorem which states
that a data structure of a nonlinear nature in an input space can be mapped to a higher
dimensional space where it can be linearly separable [9]. In other words, KPCA does the
PCA process in kernel space which introduces the advantage of high dimension mapping
of original data using a kernel trick. According to [9], the steps to perform KPCA and
reducing the dimension of the historical operating data can be described as illustrate the
Figure 1.

Input: Historical data: Snxp = {Xhyps s Xbaxp) s for ¢ class;
1: KU—K(.T“.TJ) ,j=1,...,N;
2: K — §ii'K — wKijj’ + NQ( ’KJ)JJ ;
3:0[7:ij, j=1,...,N;

Vi :
4: jz = (Z? 1 Oé]-K(l'i,x]')>]7l

Output: Transformed data: S = {XL 4, ..., X5, 417

Figure 1: Pseudo-code of the algorithm kernel PCA.

3.1 Choosing a kernel.

In this paper, the RBF kernel was selected for its generality and results in multiple
applications. The RBF kernel is defined by

Kix) = enp (202900 ()

202

where the parameter o is called bandwidth and indicates the degree of smoothness of the
function [9]. The variation of this parameter must be done very carefully [1]. In this
paper, the algorithm Differential Evolution (DE) is employed to simultaneously adjust the
kernel parameter (o) for KPCA, the depth of memory to the EWMA approach (v) and the
proposed enhancer parameter (0). For this purpose, it was employed the DE/ Xbest /2 bin
scheme with a binomial distribution function. Additionally, given ¢ mutually exclusive
operating states (faults), different from the normal operating condition (NOC), the follow
criterion was used as fitness function to adjust the RBF kernel:
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1o ;

Fitness function =1 — - ;AUC (5)
The basic idea behind this criteria is to minimize the probability of error for the discrimina-
tion process corresponding to each pair (NOC, AOC?) with i = {1,2,...,c}, using the
Area Under the Curve ROC (AUC) as a quality measure from each binary classification
process. The Differential Evolution (DE) was executed using a population size NP = 10,
a maximum iteration MaxIter = 200, a difference vector scale factor F = 0.75 and a
crossover criterion CR = 0.6. Also, the search ranges for the estimated parameters was
o € [300,1500], v € [0.001, 1], § € [0.001, 100], respectively. The stopping criteria that were
applied herein included the number of iterations and the value reached by the objective
function.

4 Results and Comparative Analysis

In this section, the proposed approach is applied on the Tennessee Eastman (TE)
process aiming to detect the simulated faults in this industrial benchmark.

4.1 Tennessee Eastman process.

The Tennessee Eastman (TE) process is widely used as a chemical plant benchmark to
evaluate the performance of new control and monitoring strategies [1,5,6,8,11]. The
process consists of five major units interconnected: a reactor, a condenser, a recycle
compressor, a separator, and a stripper. The control objectives, suggested potential
applications and features of the process simulation are described in more detail by [2]
and [3]. The historical dataset of this benchmark, are generated during 48h with the
inclusion of faults after 8 simulation hours. Each historical dataset contains a total of 52
variables (41 measured variables plus 11 manipulated variables) with a sampling time of
3 min and gaussian noise incorporated in all measurements. For the study performed in
this paper, only the 33 variables available online are considered. They allow the analysis
of the small-magnitude faults listed in Table 1. All datasets used in this paper can be
downloaded from http://web.mit.edu/braatzgroup/TE_process.zip.

Table 1: Description of the analyzed faults in TE process.

Fault Process variable Type
3 D feed temperature step
9 D feed temperature Random variation
11 Reactor cooling water inlet Random variation
temperature
15 Condenser cooling water valve Sticking

4.2 Results of the on-line application.

In order to monitor the faults of the TE process, the historical datasets should be
pre-processing using KPCA and the confidence limit from SPE and Hotelling’s 72 statistics
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has been previously established. In this paper, the number of principal components
utilized by KPCA was 19 PCs, which explains 95.07% of the total process information.
Consequently, the dimension of feature space in both cases was reduced to R'?, according
to the cutoff value of 0.001 for the eigenvalue and the estimated parameters o = 1276.23,
~ = 0.006 and § = 3.05. Once established the configuration of the tools, can be performed
the on-line detection process. For this purpose, is recommended that the kernel PCA,
the Hotelling’s T? statistic and the proposed EWMA-ED approach are embedded on one
multivariate detection scheme, which called kernel- MEWMA with reinforcing dynamic.
Based on this, Figure 2 illustrates the multivariate detection scheme used in the present

paper.

LU > PROCESS e >

MSPM approach based on kernel methods and EWMA-ED

PR L Lol s i o g £
I T
kernel PCA [—» SPE and Hotelling's T2 L » EWMA-ED

OFF-LINE ¢

Determinate the limit or
statistical thresholds which
define a fault state for a process
operation.

ON-LINE An abnormal
operation state
is detected

Figure 2: kernel- MEWMA with reinforcing dynamic

Using the above scheme, Figure 3 shows the monitoring charts obtained from Faults 3,
9 and 15, which are detected using the Hotelling statistic. Fault 3 is generated from one
step in the D feed temperature, nevertheless the corresponding measures are quite similar
to the normal data in terms of the mean and variance. As consequence, the conventional
MSPM methods can not detected this fault appropriately. Figure 3(a) shows the graphical
performance obtained by the scheme with EWMA-ED used to detect this fault. Figure 3(b)
illustrates the performance of the T2 statistic for Fault 9, which results from one random
variation in the D feed temperature. As it can be seen from this monitoring chart, the
proposed scheme detect the Fault 9 after the 116tk sample. It means that the proposed
approach generates 54 false alarms as a result of its high sensitivity to this change. The
last case shown in Figure 3(c) presents the monitoring chart of Fault 15, which is a sticking
in the condenser cooling water valve. Similar to Fault 3, the historical dataset of this fault
has little difference with the normal data. According to [2] and [6], traditional statistics can
hardly detect this fault. However, the T2 chart of the detection scheme with EWMA-ED
indicates the presence of abnormalities with a continuously detection of fault since the
161th sample.

In order to complement these graphical results, in Table 2 the monitoring performances
(FAR and latency) of some representative small-magnitude faults of the TE process are
tabulated. Using this information, in the same Table 2, a performance comparison between
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Figure 3: Hotelling’s T? charts obtained by the proposed approach to monitoring the
faults 3, 9 and 15 from the Tennessee Eastman benchmark.

the approach herein proposed using the KPCA algorithm, and the Statistical-Local KPCA
approach developed by [6], the Dynamic KPCA-based process monitoring applied by [4]
(DKPCA) and the alternative Ensemble KPCA using by [8] (EKPCA) is additionally
developed. The latency (L) is only analyzed for the proposed approach. It is an indicator
that reflects the elapsed time before the fault will be continuously detected by the diagnostic
system, considering the time in which the fault began (after 160th sample). In this paper,
the continuous detection of a fault means that the diagnostic system emits five consecutive
alarms pointing out that an abnormal operating condition is happening.

Table 2: Monitoring results and comparison with other approaches.

Proposed aproach SL-KPCA DKPCA EKPCA
Faults T%(%) | SPE(%) | L(min) T*(%) | SPE(%) T*(%) | SPE(%) T%(%) | SPE(%)
3 100.0 0.0 6.0 25.5 0.6 44 9.6 18.25 6.50
FDR 9 100.0 32.3 3.0 16.9 0.0 5.9 10.0 14.37 100.0
11 100.0 0.0 3.0 88.3 48.8 33.6 91.0 84.0 48.5
15 100.0 31.6 3.0 25.7 14.0 7.3 13.6 25.37 13.88

A detailed analysis of this comparison illustrates that, in terms of fault detection, the
Hotelling’s T2 have better performance indicator than the SPE statistic. Also, in general,
the EWMA-ED based scheme have a better performance than the others approaches for
all small-magnitude faults analyzed. As a result of this, may be said that the detection of
Faults 3, 9 and 15 requires to consider the dynamic behavior of the process to improve all
performance indicators, including the latency time.

5 Conclusions

In this paper, a novel multivariate statistical approach to detect abnormal events
associate with small fault conditions in complex industrial processes was proposed. The
proposed approach uses kernel PCA to do an effective capture of the nonlinear relationships
among the process variables and the EWMA-ED approach in order to improve the monitoring
of incipient and small-magnitude faults. Experiments have shown that the combination of
the proposed approach with this kernel method helps to attain high performance rates
in detection of small-magnitude faults. For future researches, may be interesting to
investigate the use of others kernel methods and the application of different optimization
techniques to tuning the kernel parameters.

DOI: 10.5540/03.2017.005.01.0114 010114-6 © 2017 SBMAC


http://dx.doi.org/10.5540/03.2017.005.01.0114

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

Acknowledgments

The authors acknowledge the financial support provided by FAPERJ, Fundagao Carlos
Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, CNPq, Conselho
Nacional de Desenvolvimento Cientifico e Tecnolégico, CAPES, Coordenacao de Aperfei-
goamento de Pessoal de Nivel Superior, from Brazil, and CUJAE, Instituto Superior
Politécnico José A. Echeverria from Cuba.

References

[1] J. M. Bernal—de—Lé&zaro, A. Prieto—Moreno, O. Llanes—Santiago and A. Silva-Neto.
Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial
systems. Computers & Industrial Eng., 87:140-149, 2015.

[2] L. H. Chiang, R. D. Braatz and E. L. Russell. Fault detection and diagnosis in
industrial systems. Springer, 2001.

(3] J. J. Downs and E. F. Vogel. A plant-wide industrial process control problem.
Computers € Chemical Eng, 17(3):245-255, 1993.

[4] J. Fan and Y. Wang. Fault detection and diagnosis of non—linear non—Gaussian
dynamic processes using kernel dynamic independent component analysis.
Information Sciences, 259:369-379, 2014.

[5] J. Fan, S. J. Qin and Y. Wang. Online monitoring of nonlinear multivariate industrial
processes using filtering KICA-PCA. Control Eng. Practice, 22:205-216, 2014.

[6] Z. Ge, C. Yang and Z. Song. Improved kernel PCA—based monitoring approach for
nonlinear processes. Chemical Eng. Science, 64(9):2245-2255, 2009.

[7] M. Jia, H. Xu, X. Liu and N. Wang. The optimization of the kind and parameters of
kernel function in KPCA for process monitoring. Computers & Chemical Engineering,
46:94-104, 2012.

[8] N. Li and Y. Yang. Ensemble kernel principal component analysis for improved
nonlinear process monitoring. Industrial €& Eng. Chemistry Research, 54(1):318-329,
2014.

[9] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[10] B. Schélkopf, A. Smola and K. R. Miiller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation, 10: 1299-1319, 1998.

[11] Y. Zhang. Enhanced statistical analysis of nonlinear processes using KPCA, KICA
and SVM. Chemical Eng. Science, 64(5):801-811, 2009.

DOI: 10.5540/03.2017.005.01.0114 010114-7 © 2017 SBMAC


http://dx.doi.org/10.5540/03.2017.005.01.0114

