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Abstract. We propose in this work a simple framework to build a hierarchical family
of tumor growth models by selecting a subset of the most important parameters of our
base model with respect to the evolution of the tumor volume. The importance of each
parameter is identified through a model-free sensitivity analysis technique, the elementary
effects (EE), due to its simplicity and low computational cost. This model framework
encompasses the essential hypotheses and the limited set of important parameters acquired
from the sensitivity analysis. In this way, we are able to create a family of models described
by at least the same essential conditions and parameters but with different complexities
regarding the number of parameters used. Numerical experiments are conducted to show the
reasoning behind the hierarchical developed family of tumor growth models. The modeling
framework in this manner provides a powerful way for studying a model itself or either its
simplification or extension. The framework can also be tailored to form the basis for future
models, incorporating new processes and phenomena.
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1 Introduction

The purpose of this work is to model the basic aspects regarding solid tumor growth
by developing a family of continuum models able to capture the vascular phase of tumor
growth. This approach requires to deal with various parameters, the majority of them
troublesome and relentless to be calibrated and validated [5]. From this point of view, the
“Occam’s razor” principle, which states that the simplest valid model is preferred, may
help to select the simplest model that is able to represent well a desired quantity of interest.
This approach was developed in [3], where a general adaptive modeling algorithm (The
Occam-Plausibility (OP) Algorithm) for selection and validation of coarse-grained models
of atomistic systems is presented. This algorithm represents a systematic approach to
account parameter uncertainty during model calibration and validation stages, computing
sensitivities index and making model adaptations (reducing parameters).
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The reasoning behind OP algorithm led us to pursue a simpler strategy to develop a
hierarchical family of tumor growth models from the basic model derived from [4]. We use
a simple sensitivity analysis method to investigate the influence of the input parameters on
the tumor volume evolution. The set of influential parameters and some basic hypotheses
are the core of the model family. In this way, sensitivity analysis is an essential tool
to enhance the comprehension about the model itself and drives model alterations that
eventually improve it in the “Occam’s razor” sense.

2 Mathematical Model

Our modeling framework is based on the continuum hypothesis, built on mass con-
servation principles, that govern variables such as normoxic (n), hypoxic (h) and apop-
totic (a) tumor cells densities, oxygen concentration (w), extracellular matrix (f) (ECM)
and tumor-associated angiogenesis, captured by the interplay among endothelial cells (m)
and the secretion of the vascular endothelial growth factor (g) (VEGF). The nondimen-
sional model defined in Ω×(0, τmax) is given by the following set of seven nonlinear coupled
partial differential equations:

∂w

∂t
= ∇ · (Dw∇w) + αwm(1− w)− βw(n+ h+m)w − γww;

∂n

∂t
= ∇ · (Dn(max{n− νc, 0}+ 1)∇n)−∇ · (nχn∇f) + αnnmax{1− v, 0} − αhH(ωh − w)n

+ hnαhH(w − ωh)h;

∂h

∂t
= ∇ · (Dh∇h) + αhH(ωh − w)n− hnαhH(w − ωh)h− βhH(ωa − w)h;

∂a

∂t
= ∇ · (Da∇a) + βhH(ωa − w)h;

∂m

∂t
= ∇ · (Dm∇m)−∇ · (mχm∇g) + αmmgmax{1− v, 0};

df

dt
= −βfnf ;

∂g

∂t
= ∇ · (Dg∇g) + αghmax{1− g, 0} − βgmg.

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

All types of cells and ECM are combined and assumed to occupy the whole microenvi-
ronment v(x, t) so that the total cell density is given by: v(x, t) = n(x, t) + h(x, t) +
a(x, t) +m(x, t) + f(x, t). The oxygen concentration is considered the only source of nu-
trients for cell viability, and it is assumed to diffuse randomly through the computational
domain. The cell phenotypes, proliferative (normoxic), quiescent (hypoxic) and dead cells
(apoptotic), depend on the oxygen availability in the system and are captured by a Heav-
iside function H. The thresholds wh and wa represent the oxygen concentration below
which the cell becomes hypoxic and apoptotic, respectively. Cells are transported mainly
because diffusion, albeit directional fluxes are likewise considered. There is haptotactic
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migration of normoxic cells towards the gradient of ECM and a chemotactic response of
endothelial cells to the gradient of VEGF. The ECM degrades due to normoxic cells and
tumor-associated angiogenesis is trigged by VEGF production, which drives the growth
of endothelial cells. Some of the terms in (1) are indicated in red, which will be justified
later in this work.

The approximate solution to system (1) is solved by developing a stabilized finite
element method (FEM) and using an implicit Euler method to approximate the time
derivatives. For details on model solution and numerical methodology, please see [1]. The
resulting FEM method is implemented in C++ using the open source libMesh library. The
1D experiments shown here simulate the growth of a small tumor placed in the middle of
the domain. Due to symmetry, only half of the computational domain is modeled so that
Ω = (0, 3) is partitioned into 400 uniform elements. The time domain with τmax = 350 is
also partitioned into uniform time step sizes equal to ∆t = 0.1.

3 Sensitivity Analysis

The deterministic model (1) requires the knowledge of 22 input parameters (shown in
Table 1). Some of them are obtained from the literature whereas there is either incomplete
or lack of knowledge about the others. More seriously, we do not know a priori how they,
and their uncertainties, affect the model outcome. Sensitivity analysis may help to identify
this issue and drive model modifications.

Screening methods are well adapted to work with a large number of input parameters
and were built to distinguish which ones are non-influential with a small number of model
evaluations. Here we use the EE method due to its good properties and simplicity [6]. The
model quantity of interest (QoI) is the tumor volume, which is represented by a function
Y (X), where X = (X1, . . . , Xd) is a vector of d independent input parameters. Considering
that all variables in the input space are transformed into dimensionless variables in the
unit hypercube, i.e., X ∈ [0, 1]d, then, for a given value X, the elementary effect of the ith
input factor is defined as:

EEi =
Y (X1, . . . , Xi + ∆, . . . , Xd)− Y (X)

∆
=
Y (X + ei∆)− Y (X)

∆
. (2)

Here, ∆ is a predetermined integer in {1/(p − 1), . . . , 1 − 1/(p − 1)}, p is the number of
levels into which the unit hypercube is discretized, (X + ei∆) is equal to X apart for
its ith component, that has been increased by a total amount of ∆, and ei is a vector
of zeros but a unit at its ith component [6]. According to an one-(parameter)-at-a-time
(OAT) sampling strategy, the distribution of elementary effects associated with the ith
input factor can be obtained. Global SA measures are then calculated by averaging the
elementary effects, using as sensitivity measures the estimates of the absolute mean µ∗i
and the standard deviation σi of this distribution. The mean µ∗i evaluates the general
impact of the ith parameter on the output (QoI), while the standard deviation σi assesses
the overall interplay of parameter effects, including linear/nonlinear interactions among
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parameters. They are computed for each ith input parameter as:

µ∗i =
1

r

r∑
j=1

|EEji |; σ2
i =

1

r − 1

r∑
j=1

(EEji − µi)
2, (3)

where r is the number of trajectories by which the hyperspace is “sampled”. Higher
µ∗i indicates a more influential parameter while higher σi is an evidence of increased
correlation or nonlinearity between parameters. The details regarding the construction
of the trajectories are provided in [1].

Table 1: Nondimensional parameters.

Par. Value Meaning Par. Value Meaning
Dw 0.58 nutrient diffusion coeff. βw 0.57 oxygen consumption rate
Dn 5.8 × 10−5 normoxic cells diffusion coeff. βh 0.32 transfer rate from h to a
Dh 1.0 × 10−5 hypoxic cells diffusion coeff. βf 0.5 rate of ECM degradation
Da 1.0 × 10−6 apoptotic cells diffusion coeff. βg 5.0 VEGF consumption rate
Dm 5.8 × 10−5 endothelial cells diffusion coeff. ωh 0.4 threshold n to h
Dg 0.02 VEGF diffusion coeff. ωa 0.3 threshold h to a
αw 1.0 rate of oxygen growth χn 1.4 × 10−4 haptotatic constant (n)
αn log2 rate of normoxic cells prolif. χm 2.1 × 10−6 hapoptatic constant (m)
αh 1.6 transfer rate from n to h γw 0.025 oxygen decay rate
αm 0.7 rate of endothelial cells growth νc 0.8 crowding constant
αg 10.0 rate of growth of VEGF hn 0.1 % transfer rate from h to n

Some analysis are shown in Figure 1 for the basic one-dimensional tumor growth model
presented in Section 2. Figures 1(a) and 1(b) depict the elementary effects using r = 20
and r = 50 for a fixed value of p = 4, respectively. Some parameter related measures are
explicitly indicated. Clearly, there are two different regions: the less important parameters
are those whose measures are close to zero and the most influential parameters are those for
which µ∗i > 0.1. Moreover, higher σi is an evidence of increased correlation or nonlinearity
between parameters. Remarkably, the set of influential parameters does not depend on r.
This behavior is highlighted in Figure 1(d), which shows µ∗i for r up to 50. The rank of
importance is clearly defined: Dn is the most influential parameter, followed by ωa, βw,
βf , αn, and Dw. The uncertainties of the other 15 model parameters do not significantly
impact the QoI.

4 Hierarchical Family of Tumor Growth Models

Guided by the results obtained from the sensitivity analysis, we propose a simple
model-building framework for model development, including model simplification and en-
hancement. This model framework encompasses the essential hypotheses and the limited
set of important parameters acquired from the sensitivity analysis. We assume that the
hierarchical family of models satisfies the following hypotheses: (i) the medium is het-
erogeneous; (ii) angiogenesis is triggered during the tumor evolution thus implying that
tumor cells undergo different phenotypic stages (normoxic, hypoxic and apoptotic); (iii)
only normoxic cells proliferate at rate αn; (iv) the transitions between cell stages mainly
depend on the threshold ωa (and so on ωh); (v) the oxygen transport depends on the
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diffusion coefficient Dw and oxygen uptake rate βw; (vi) tumor evolution depends on the
extracellular matrix degradation (βf ); (vii) tumor evolution also depends on normoxic
cells motility due to diffusion (Dn).

Here, we develop a simpler member of the family (for a model enhancement, see [1]).
This simplified model is built by disregarding the following phenomena: (i) the natural
oxygen decay; (ii) the increase of the oxygen diffusion coefficient to avoid crowding; (iii)
the haptotactic movement of normoxic cells towards ECM’s gradient; (iv) the chemotactic
movement of endothelial cells towards VEGF’s gradient. This means that we disregard
the red terms highlighted in system (1). With these assumptions, the number of model
parameters decreases to 18. The tumor evolution obtained for this model is compared with
the evolution of the base model depicted in Figure 2. We perform a sensitivity analysis to
this model through the elementary effects method (under the same assumptions selected
for the base model) to verify that the set of important parameters indeed remains the
same. As shown in Figure 1(c), this indeed occurs.
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(c) Simplified Model: µ∗
i × σ for r = 20 and p = 4.
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Figure 1: Global EE measures for the original and simplified models using specific values of r and
p. For p = 4, Figures 1(a), 1(b) and 1(c) show absolute means (µ∗

i ) and standard deviation (σi)
for r = 20 and r = 50. Figure 1(d) shows the dependence of µ∗

i with respect to the number of
trajectories r for the original model.
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(a) Original Model. Time: t = 70.
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(b) Simplified Model. Time: t = 70.
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(c) Original Model. Time: t = 280.

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.3  0.6  0.9  1.2  1.5

x

w n h a m f

(d) Simplified Model. Time: t = 280.
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(e) Original Model. Time: t = 350.
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(f) Simplified Model. Time: t = 350.

Figure 2: Behavior of the nondimensional models presented in this work. The left column refers
to the original model (1) and the right column refers to the simplified model (system (1) without
the red terms). As the tumor grows, hypoxic cells appear in Figure 2(c), yielding the growth
of endothelial cells towards the tumor. This allows the increase of proliferative cells depicted in
Figure 2(e), which ends up increasing the nutrient uptake resulting in cell death where w < ωa.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0063 010063-6 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0063


7

5 Conclusion

In this work we focus on the development of a family of hierarchical deterministic
tumor growth model capable of capturing both avascular and vascular phases of cancer.
The impact of parameter uncertainty was assessed by performing a sensitivity analysis
through the elementary effects technique. This method was able to identify the set of
most influential parameters with respect to the evolution of the tumor volume, chosen
as the model quantity of interest. We showed that oxygen diffusion and uptake, oxygen
thresholds that drive phenotypic transitions, ECM degradation, normoxic cells diffusion
and proliferative rate play major role in tumor progression.

Guided by the results obtained from the sensitivity analysis, we proposed a simple
model-building framework for model development. We built a hierarchical family of tu-
mor growth models that share common hypotheses (and the same set of most influential
parameters) with different complexities regarding the number of parameters used. We
built a simpler model, disregarding the terms related to some non-influential parameters
and addressed the uncertainty in this model through sensitivity analysis, that showed that
indeed the same set of influential parameters are identified.
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