Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Modelo matemático para tratamento do carcinoma papilífero da tireoide metastático usando efeito Allee

Jairo G. Silva¹
Programa de Pós-Graduação em Biometria, UNESP, Botucatu, SP Paulo F. A. Mancera²
UNESP, Botucatu, SP
Maria E. Antunes³
Programa de Pós-Graduação em Biometria, UNESP, Botucatu, SP

O Instituto Nacional do Câncer estima que em 2020, aproximadamente 13.780 pessoas morreram em decorrência do câncer de tireoide, sendo o mais frequente na região da cabeça e pescoço. O carcinoma diferenciado da tireoide (DTC) é o tipo histológico com maior incidência, sendo seu subtipo mais comum o câncer papilífero da tireoide (PTC). Como tratamento, recomenda-se a tireoidectomia, que consiste na remoção cirúrgica de parte ou de toda a glândula. Nos casos de metástase e captação de iodo pelo tumor, o mais indicado é o uso da terapia com Iodo Radioativo ¹³¹I (RAI). O sistema imunológico é essencial na regulação e evolução de tumores. No caso do PTC, a citocina interleucina 6 (IL-6), reguladora de processos inflamatórios e imunes, desempenha um papel importante na progressão da doença, e geralmente se encontra associada a uma menor taxa de sobrevida nos pacientes [2,4].

Neste trabalho, utilizamos o modelo matemático proposto em [3] com o objetivo de estudar o uso do RAI no tratamento ao PTC metastático, levando em consideração a proliferação de células tumorais impulsionada pelo efeito Allee do tipo forte. Enquanto em [3] o modelo leva em conta a administração de uma única dose do RAI para tratamento do PTC, aqui abordamos o uso de mais de uma aplicação para tratamento do PTC metastático.

O modelo matemático possui quatro variáveis, todas dependendo do tempo t
. Denotando por A a dose usada de radio
iodo $^{131}{\rm I}$, por N o número de células tumora
is, por I a concentração sérica de IL-6 e por Tg a concentração sérica de tireoglobul
ina, o modelo é proposto:

$$\begin{cases}
\frac{dA}{dt} = -a \log(2)A, \\
\frac{dN}{dt} = \alpha (1 - k \exp(-\beta I)) N \left(\frac{N}{Q} - 1\right) \left(1 - \frac{N}{K}\right) - \rho A N, \\
\frac{dI}{dt} = \sigma + \frac{cN}{\gamma + N} + bA - mI, \\
\frac{dT_g}{dt} = pN - dT_g
\end{cases} \tag{1}$$

Os parâmetros utilizados no modelo são considerados não negativos e seguem descritos na Tabela 1. Considerando apenas casos de metástases, realizamos simulações numéricas com uso de diferentes números de aplicações e doses em tratamentos utilizando RAI, além de diferentes valores

 $^{^1} jairo.gomes@unesp.br\\$

²paulo.mancera@unesp.br

³maria.antunes@unesp.br

2

Tabela 1: Parâmetros e seus significados

	Tabela 1. Tarametros e seus significados
Parâmetro	Descrição
a	Meia vida efetiva do ¹³¹ I
α	Proliferação de células tumorais sob a influência da IL-6
k	Coeficiente para valor mínimo na taxa de proliferação
β	Influência da IL-6 na proliferação tumoral
Q	Limite associado ao efeito Allee
K	Capacidade de suporte da população tumoral
ρ	Eficiência do RAI nas células tumorais
σ	Produção natural de IL-6
c	Taxa de produção da interleucina pela massa tumoral
γ	Número de células tumorais que regulam a produção de IL-6 pela massa tumoral
b	Aumento da IL-6 devido ao tratamento com RAI
m	Eliminação natural da IL-6
p	Produção da tiroglobulina pelas células tumorais
d	Eliminação da tiroglobulina na corrente sanguínea

para a eficiência do radioiodo em eliminar as células tumorais (ρ) . Discutimos o uso do efeito Allee para modelar a eficiência requerida para o sucesso do tratamento e como este pode estar associado ao tempo de sobrevida livre de progressão da doença. Desta maneira, o modelo proposto é capaz de modelar rotinas de tratamentos ao câncer de tireoide, de modo a revelar condições necessárias para o controle da doença ou a necessidade de tratamentos complementares. Assim, o modelo matemático proposto em [3] também pode contribuir para a discussão do tratamento de metástases no PTC, visando o sucesso do mesmo.

Agradecimentos

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

Referências

- [1] Barbolosi, D. J. et al. Modeling therapeutic response to radioiodine in metastatic thyroid cancer: a proof-of-concept study for individualized medicine, *Oncotarget*, 8:39167-39176, 2017.
- [2] Dunn, G. P., Old, L.J., Sheireber R.D. The three Es of cancer immunoediting, *Annual Review of Immunology*, 22:329-360, 2004.
- [3] Silva, J. G., Morais, R., Silva, I. C. R., Adimy, M., Mancera, P. F. A. A mathematical model for treatment of papillary thyroid cancer using the Allee effect *Journal of Biological Systems*, 28:701-718, 2020.
- [4] Yu, H. et al. Immune status in patients with thyroid carcinoma and its correlation with clinicopathologic characteristics, Annual Review of Immunology, 28(16):7286-7294, 2017.