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Abstract— The phenomenon of attractor bubbling consists in incomplete or imperfect synchronization be-
tween two coupled chaotic oscillators, which synchronization regime is broken for brief escapes of different sizes.
Here, we use as oscillators two chaotic electronic circuits coupled through unidirectional linear feedback in the
regime of moderate coupling to study the occurrence of attractor bubbling in this system. For two different
dynamical states, the system exhibits different chaotic attractors. Analysing temporal series, we build empirical
distributions of the amplitudes of desynchronization events for different values of the coupling parameter. We
observe that in the regime of attractor bubbling the distributions are characterized by a heavy tail, bearing simi-
larity to the ones observed in complex systems with self-organized criticality. A given heavy-tailed distribution is
exhibited by the two chaotic states for different coupling strengths. We explain this effect of the attractor shape
on the statistics of the desynchronization as caused by a region of instability, which is more often visited for one
of the attractors than it is by the other.

Keywords— Chaotic dynamic, electronic circuits, heavy-tail statistics, chaotic attractor, attractor shape,
attractor bubbling

1 Introduction

Because trajectories of chaotic systems are expo-
nentially sensitive to perturbations in phase-space
(Boccaletti et al., 2002), the study of chaotic syn-
chronization (Pecora and Carroll, 1990) is more
interesting than that of periodic states (Acebrón
et al., 2005). Indeed, one can find several general-
izations to the concept of chaotic synchronization
(Rulkov et al., 1995; Rosenblum et al., 1996; Ko-
carev and Parlitz, 1996). In special, mismatched
parameters or noise can make a system exhibit
imperfect synchronization. In such a situation
the systems are most of the time synchronized
and eventually bursts of desynchronization occur,
the so-called attractor bubbling (Heagy et al.,
1995; Gauthier and Bienfang, 1996; Venkatara-
mani et al., 1996). Here we study a nonlinear dy-
namical system comprised of two electronic oscil-
lators governed by second-order differential equa-
tions and driven by an external periodic force
(Gonçalves and Neto, 2011; Junior et al., 2013).
Besides high-quality sinchronization for strong
coupling regime and uncorrelation for weak cou-
pling regime, for an intermediate range of values
of the coupling level the system presents imper-
fect chaotic synchronization, exhibiting, then, at-
tractor bubbling, where the difference between the
state variables observed in the coupled elements
shows long intervals of low values interspersed
with sudden and brief departures to large values,
which we call bubbles, bursts, or desynchroniza-
tion events. The distribution of burst sizes fol-
lows a heavy-tailed histogram, with large events

becoming increasingly rare, similar to power-law
(Pareto) distributions found in Lévy Flights. We
related heavy-tailed distributions appearing in
complex systems to the statistics of desynchro-
nization events in simple coupled chaotic systems
(Ashwin et al., 1994; Cavalcante et al., 2013). We
observe that the system studied here may exhibit
two different chaotic states when the values of
the system parameters are changed. We compare
the occurrence of attractor bubbling for different
“shapes” of the attractor, corresponding to two
distinct chaotic states, and we show that in one
of these states the occurrence of bursts of desyn-
chronization is more probable.

2 Circuit description

The schematic diagram of one of the chaotic os-
cillators (the drive system) is shown in Fig. 1. It
is comprised of resistors, capacitors, diodes and
operational amplifiers. The values of the compo-
nents used in the circuit are: R1 = 46.5 kΩ, R
= 14.86 kΩ, R2 = 14.85 kΩ, RE = 14.86 kΩ, RL

= 512 Ω, R3 = 14.85 kΩ, C1 = 14.73 nF, C2 =
14.83 nF, C3 = 14.83 nF. The diodes D1 and D2

are model 2N4148 and the operational amplifiers
OP1 and OP2 are LF411CN.

Analysis of Kirchhoff’s laws to our circuit re-
veals that the dynamical state of the circuit can
be expressed in terms of the voltages V1d, V2d and
VE , which obey a second-order differential equa-
tion with an external pumping (Gonçalves and
Neto, 2011). This second-order differential equa-
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Figure 1: Schematic diagram of the electronic cir-
cuit for one chaotic oscillator. This circuit imple-
ments a second-order differential equation driven
by external sinusoid signal.

tion can be written as two first-order equations:

V̇1d = −αV1d − βI(V2d)− θVE , (1)

V̇2d = σV1d, (2)

where V1d and V2d are the voltages at the outputs
of OP1 and OP2, respectively, VE = A sinωt, ω =
2πf , α = 1/(R1C1), β = 1/(C1), θ = 1/(REC1),
σ = 1/(R2C2) and I(V2d) is the current through
the diodes D1 and D2 and going out of the in-
verting input of OP1. It is approximately given
by

I(V ) =







(V + 0.7)/RL, if V2d < −0.7,
0, if |V2d| ≤ 0.7,

(V − 0.7)/RL, if V2d > 0.7,
(3)

and this function is depicted in Fig. 2.
Let us recall that, for a continuous, au-

tonomous system to be chaotic its dynamics needs
i) to be embedded in at least a three-dimensional
(3D) phase-space (Strogatz, 1994), and ii) to have
a nonlinear term. The nonlinearity of our system
is in the current due to the diodes, D1 and D2,
and it is given by Eq. (3). The phase of the exter-
nal forcing can be recast as a dynamical variable
that provides for the third dimension.

Changing the amplitude and the frequency
of the external signal we control the dynamical
behavior of the system, turning it periodic or
chaotic. Fig. 3 shows two projections in the plane
V1d-V2d of a chaotic trajectory in the 3D attractor
of the drive system for different values parame-
ters: external pumping of (a) A = 4.0 V and f =
770 Hz (attractor A) and (b) A = 4.0 V and f =
980 Hz (attractor B). The trajectories of the at-
tractor in Fig. 3(a) pass close to a central region
(V1d = V2d = 0 V) of phase space. Whereas the
trajectories of attractor in Fig. 3(b) do not visit
that region of phase space. As we show later, syn-
chronization is harder for the attractor shown in
Fig. 3(a), thus suggesting that the central region
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Figure 2: Nonlinear current through a pair of anti-
parallel diodes. This is the piecewise-linear cur-
rent given by Eq. (3).

around V1d = V2d = 0 V is unstable (Gauthier
and Bienfang, 1996).
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Figure 3: Chaotic trajectorys in the plane V1d-V2d,
obtained with external pumping of (a) A = 4.0 V
and f = 770 Hz (attractor A), (b) A = 4.0 V and
f = 980 Hz (attractor B). The values of the other
parameters are given in the text.

In Fig. 4 we show the response circuit together
with the coupling circuit, where the feedback
signal is produced by a subtractor (operational-
amplifier OP3) whose input voltages are V1d and
V1r and whose output voltage is V1d − V1r. This
feedback signal is added to the dynamics of the re-
sponse subsystem providing the coupling between
the response and the drive. The parameter that
measures the coupling level between the circuits
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is ǫ = R2/RRE , which is tunable by resistor RRE .
We set the parameters such that the circuits were
both in the same chaotic state when uncoupled
(ǫ = 0).

The components of the response and subtrac-
tor circuits have the following values: R1, R, R2,
R3, RE , C1, the diodes D1 = D2 and the oper-
ational amplifiers OP1, OP2 and OP3 are equal
to the ones used in the drive circuit. RL = 511
Ω, R4 = R5 = R6 = R7 = 14.85 kΩ, C2 = 14.87
nF, C3 = 14.87 nF. The same sinusoidal signal
from a function generator, with amplitude of 4.0
V and frequency 770 Hz (attractor A) or 980 Hz
(attractor B) was applied to both the drive and re-
sponse systems. Notice that the third dimension
does not contribute to the distance, as both oscil-
lators share the same value of VE (the complete
system is indeed 5D, instead of 6D).
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Figure 4: Schematic diagram of the response sys-
tem, showing the feedback subcircuit that couples
the response circuit to the drive circuit.

The rate equations that describe the dynam-
ics in both circuits are the same, except for pa-
rameter mismatch of about 1% and the coupling
term between the circuits which is present in the
response circuit equation:

V̇1r = −αV1r − βI(V2r)− θVE (4)

+
ε
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Figure 6: Log-log distribution of the voltages ob-
tained from the error signal |x⊥| = |V1d − V1r| +
|V2d − V2r| time series Figure 5 for different cou-
pling levels: (a) and (b) ǫ = 1.0, (c) and (d) ǫ =
0.6, (e) and (f) ǫ = 0.4, (g) and (h) ǫ = 0.0. (a),
(c), (e) and (g) with external pumping of A = 4.0
V and f = 770 Hz and (b), (d), (f) and (h) with
external pumping of A = 4.0 V and f = 980 Hz.

highly synchronized states. When the coupling is
weak (ǫ < 0.3) for both states the oscillations of
circuits are practically independent, specially for
ǫ = 0.0 (Fig. 6(g) and 6(h)) when they are com-
pletely independent. Between the situations with
strong and weak coupling, i.e., for moderate cou-
pling, the system exhibits attractor bubbling, but
it occurs for different levels of coupling depending
on which attractor “shape” (again attractor A or
B) is used. For ǫ = 0.6, we observe in Fig. 6(c)
a heavy-tailed structure whereas in Fig. 6(d) we
do not observe a heavy-tailed structure, the sys-
tem is still practically synchronized. For ǫ = 0.4
(see Fig. 6(e)) the system has a large error signal,
whose bursts of desynchonization are so frequent
that we do not consider them as bubbling phenom-
ena, but a signature that the circuits are indepen-
dent. In Fig. 6(f) (ǫ = 0.4) the system exhibits
bubbling, having a heavy-tailed structure. Thus,
synchronization is harder for f = 770 Hz (attrac-
tor A) than it is for f = 980 Hz (attractor B). As
one can observe attractor B exhibits bubbling for
coupling levels smaller than attractor A. Notice
that curves (e) and (c) of Fig. 6 are higher than
their respectives (f) and (d), with the same values
of ǫ.

The occurrence of attractor bubbling is due
to a region of instability in the phase space of the
chaotic system. Thereby, when a trajectory of the
system gets close to this unstable region there is a

certain probability that the trajectory of the drive
circuit will be repelled in a direction while the re-
sponse system will be repelled in a different one,
generating the bursts of desynchronization shown
in Fig. 6. Hence, when our coupled chaotic os-
cillators approach the region with V1 = V2 = 0
V there is a nonzero probability that noise or pa-
rameter mismatch will throw the drive oscillator
to one sign of V2 and at same time the receiver
oscillator to the other sign of V2, thus causing a
desynchronization event (attractor bubble). As
the trajectories in phase space of attractor A pass
more often in the region around V1 = V2 = 0 V
than the trajectories of attractor B, the probabil-
ity of attractor A exhibiting a burst is greater than
that of attractor B. Thus attractor bubbling oc-
curs for attractor B at coupling strengths smaller
than those necessary for attractor A.

4 Conclusions

Studying the coupling between two chaotic elec-
tronic circuits we showed the existence of attrac-
tor bubbling for two different chaotic attractors
and for moderate coupling strengths. Analysing
the empirical distribuitions of error signal of the
system we find that attractor bubbling generates
heavy-tailed distributions that are reasonably ap-
proximated by truncated power-laws. The attrac-
tor shape interferes with the behavior of the error
signal of two coupled chaotic systems. As one of
the attractors passes more often close to the un-
stable region of phase space compared to the other
one, it requires stronger coupling to exhibit bub-
bling.
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