Trabalho apresentado no CNMAC, Gramado - RS, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Grafos Threshold Equienergéticos

Fernando Colman Tura¹

Departamento de Matemática, Centro de Ciências Naturais e Exatas, UFSM, Santa Maria, RS.

Resumo. A energia de um grafo é definida como a soma dos valores absolutos dos seus autovalores. Dizemos que dois grafos, não isomorfos e com mesmo número de vértices são equienergéticos, se eles possuem a mesma energia. Um grafo threshold com n vértices (ordem n) é definido através de uma sequência binária de n dígitos. O propósito deste trabalho é apresentar famílias de grafos threshold equienergéticos, incluindo o resultado que afirma para todo $n \ge 3$ existem n - 1 grafos threshold, não coespectrais de ordem n^2 , com a mesma energia que o grafo completo K_{n^2} .

Palavras-chave. grafos threshold, matriz de adjacência, autovalores, energia.

1 Introdução

O tema deste trabalho está relacionado com a Teoria Espectral de Grafos. A Teoria Espectral de Grafos tem como objetivo relacionar propriedades espectrais de matrizes associadas a grafos, tais como: autovalores, autovetores, e polinômios característicos com a estrutura desses grafos.

Seja G = (V, E) um grafo com vértices $V = \{v_1, v_2, \ldots, v_n\}$ e o conjunto de arestas E, sua matriz de adjacência $A = [a_{ij}]$ é uma matriz de ordem $n \times n$ formada por zeros e uns tal que $a_{ij} = 1$ se e somente se v_i é adjacente a v_j (isto é, existe uma aresta entre $v_i \in v_j$) e $a_{ij} = 0$, caso contrário.

O espectro de um grafo é o conjunto dos autovalores de sua matriz de adjacência. Podemos verificar várias propriedades dos grafos analisando a sua matriz de adjacência. Por exemplo, a partir do polinômio característico de G, obtido por p(x) = det(A - xI), ou seja,

$$p(x) = x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + \ldots + a_{n-1}x + a_{n}$$

podemos obter as seguinte informações:

o número de arestas é igual a −a₂, e também igual a metade da soma dos quadrados dos autovalores;

¹ftura@smail.ufsm.br

- $\mathbf{2}$
- o número de triângulos é igual a $-\frac{a_3}{2}$, e também igual a $\frac{1}{6}tr(A^3)$;
- o elemento ij da matriz A^t indica o número de cadeias de comprimento t entre o iésimo e j- ésimo vértices do grafo.

Um invariante relacionado ao espectro de um grafo é a energia. A energia de um grafo G, definida por Gutman em [4] é a soma dos valores absolutos dos autovalores de G. Mais precisamente, se $\lambda_1, \lambda_2, \ldots, \lambda_n$ são os autovalores da matriz de adjacência associada ao grafo G, então a energia é obtida por $E(G) = \sum_{i=1}^{n} |\lambda_i|$. Existem vários resultados sobre a energia de grafos. Citaremos a seguir, alguns deles que podem ser encontrados em [1,3].

- $E(K_n) = 2(n-1)$, onde K_n é o grafo completo de ordem n;
- $E(G) \leq \sqrt{2nm}$, para todo grafo G com n vértices e m arestas;
- $2\sqrt{m} \leq E(G) \leq 2m$, para todo grafo G com m arestas.

2 Grafos Threshold

Os grafos *threshold* foram introduzidos por Chvátal e Hammer [2] nos anos 70. Eles são uma importante classe de grafos devido as várias aplicações em psicologia, sincronização de processos paralelos e outros [7]. Provavelmente por este motivo, eles aparecem na literatura com vários nomes equivalentes.

Existem muitas maneiras de definir os grafos *threshold*, mas independente da maneira, um grafo *threshold* é obtido a partir de um processo recursivo que inicia com um vértice isolado e que, a cada passo, ou um novo vértice isolado é adicionado, ou um vértice adjacente a todos os vértices anteriores (vértice *dominante*) é adicionado. Dessa forma podemos definir um grafo *threshold* G de ordem n, através de uma sequência de tamanho n composta por caracteres 0 e 1. Denotaremos por 0 sempre como o primeiro caracter da sequência; ele representa o primeiro vértice do grafo. A seguir cada 0 representa a adição de um vértice isolado e 1, a adição de um vértice dominante.

Definição 2.1. Um grafo threshold G = (V, E) de ordem n é definido por uma sequência binária $(b_1b_2...b_n)$, onde $b_i = 0$, representa adição de um vértice isolado e $b_i = 1$, representa adição de um vértice dominante.

Como ilustração, a Figura 1, representa o grafo *threshold* definido pela sequência binária (001110011) ou $(0^21^30^21^2)$. Outro exemplo de grafo *threshold* é o grafo completo K_n , que possui representação igual a (01...1), com n-1 caracteres iguais a 1.

Uma maneira de obter a energia de um grafo é determinar o seu espectro, ou seja, os seus autovalores. Embora na prática, na maioria dos casos, isso é não trivial, pois não possuímos método algébrico para encontrar raízes de polinômios de grau maior do que 5, a classe de grafos threshold possui uma particularidade. Se A é a matriz de adjacência de um grafo threshold G, o polinômio característico de G pode ser obtido através de uma redução da matriz A. Aqui será apresentado a idéia geral dessa redução, para mais detalhes, consultar [8].

Figura 1: O grafo threshold $(0^2 1^3 0^2 1^2)$

Seja G um grafo threshold com sequência binária $(b_1b_2...b_n) = (0^{s_1}1^{t_1}...0^{s_k}1^{t_k})$, onde $s_1, t_1, ..., s_k \in t_k$ são números inteiros e positivos, tais que $b_1 = 0 \in b_n = 1$. Então:

- 1. A multiplicidade do autovalor 0 é o número de subsequências 00 em $(b_1b_2...b_n)$.
- 2. A multiplicidade do autovalor -1 é obtida por:

$$\begin{cases} \sum_{i=1}^{k} (t_i - 1) & \text{se } s_1 > 1 \\ 1 + \sum_{i=1}^{k} (t_i - 1) & \text{se } s_1 = 1. \end{cases}$$

Após a obtenção dos termos x e x + 1, a redução de A é obtida através de uma partição equilibrada dos vértices (cliques e vértices independentes), cujo polinômio característico é adicionado o fator restante. Por exemplo, considere o grafo threshold G de ordem 16, definido por $(01^{5}0^{6}1^{4})$. A partição equilibrada de G é ilustrada na Figura 2, onde as células em azul representam uma clique, enquanto que a célula em branco representa um conjunto de vértices independentes. Usando as fórmulas acima, verificamos que a multiplicidade do autovalor 0 é 5, enquanto que a multiplicidade do autovalor -1 é 8. A redução da matriz A, a partir da partição equilibrada é dada pela seguinte matriz

$$\left[\begin{array}{rrrr} 3 & 6 & 6 \\ 4 & 5 & 0 \\ 4 & 0 & 0 \end{array}\right].$$

Calculando o polinômio característico da matriz reduzida, obtemos que o polinômio de G é

$$x^5(x+1)^8(x^3-8x^2-33x+120).$$

Embora esse método seja muito utilizado, existem certas classes de grafos threshold, em que a redução da matriz de adjacência, é relativamente pequena quando comparada a matriz original. Nesse sentido, um método alternativo é apresentado no trabalho [5], no qual exibe um algoritmo para o cálculo dos polinômios característicos de grafos threshold de ordem n.

4

3 Famílias Equienergéticas

Nesta seção, são apresentadas famílias de grafos *threshold* equienergéticas, não coespectrais, ou seja, que não possuem o mesmo espectro. Note que, determinar grafos com tais propriedades, tornam o problema mais interessante, uma vez que, grafos com o mesmo espectro, são naturalmente equienergéticos.

As demonstrações dos resultados omitidos aqui, podem ser encontradas em [6].

Lema 3.1. Para inteiros positivos s, k e j, o polinômio característico do grafo threshold $(01^s0^k1^j)$ é dado por

$$x^{k-1}(x+1)^{s+j-1} \cdot (x^3 - (s+j-1)x^2 - (s+jk+j)x + kjs)$$
(1)

Prova: Uma vez que a multiplicidade dos autovalores 0 e -1 são iguais a k - 1 e s + j - 1, respectivamente, o fator restante é obtido via partição equilibrada, tomando $V_1 e V_2$ como cliques de tamanho j e s+1, respectivamente, e V_3 como conjunto de vértices independentes de tamanho k.

Lema 3.2. Sejam b e c números reais positivos, tais que $x^2 - bx + c$ possui raízes reais λ_1, λ_2 . Então $|\lambda_1| + |\lambda_2| = b$.

Prova: Como $b > \sqrt{b^2 - 4c}$, segue que ambas raízes $\lambda_1 = \frac{b - \sqrt{b^2 - 4c}}{2}$ e $\lambda_2 = \frac{b + \sqrt{b^2 - 4c}}{2}$ são positivas. Portanto, temos que $|\lambda_1| + |\lambda_2| = b$.

Teorema 3.1. Os grafos de ordem $n, G = (01^{2m}0^{2m-1}1^{4m})$ e K_n são não coespectrais e equienergéticos, se $n = 8m, m \ge 1$.

Prova: Como o espectro do grafo completo K_n é igual a -1 e n - 1, com multiplicidade n-1 e 1, respectivamente, tomando s = 2m, k = 2m-1, j = 4m no Lema 3.1, (1) torna-se

$$x^{2m-2}(x+1)^{6m-1} \cdot (x^3 - (6m-1)x^2 - (8m^2 + 2m)x + 16m^3 - 8m^2).$$

Fatorando a cúbica, obtemos que

$$x^{2m-2}(x+1)^{6m-1} \cdot (x+2m)(x^2 - (8m-1)x + 8m^2 - 4m).$$

Usando o Lema 3.2, temos que $E(G) = (6m - 1) + 2m + (8m - 1) = 16m - 2 = E(K_n)$.

Teorema 3.2. Os grafos de ordem $n, G = (01^{2m+1}0^{2m}1^{4m+2})$ e K_n são não coespectrais e equienergéticos, se $n = 8m + 4, m \ge 1$.

Prova: A demonstração segue análoga à prova do Teorema 3.1.

Teorema 3.3. Os grafos de ordem $n, G = (01^{4m}0^{2m-1}1^{3m})$ e $G' = (01^m0^{2m-1}1^{6m})$ são não coespectrais e equienergéticos com K_n , se $n = 9m, m \ge 1$.

Prova: A demonstração segue análoga à prova do Teorema 3.1.

Uma questão natural, que surge a partir dos resultados apresentados acima, é determinar a existência de mais do que três famílas de grafos *threshold* de ordem n, não cospectrais e equienergéticos. Na verdade, existem muitos grafos *threshold* equienergéticos, como ilustra o seguinte resultado.

5

Teorema 3.4. Para cada $n \ge 3$ existem n-1 grafos threshold de ordem n^2 , não coespectrais e equienergéticos com K_{n^2} .

Como ilustração desse resultado, na Tabela 3.1, são apresentados todos os grafos *threshold* de ordem 36, não coespectrais e equinergéticos com K_{36} . A prova do resultado pode ser verificada em [6].

n	G	p(x)	E(G)
36	$(01^{25}0^41^6)$	$x^{3}(x+1)^{30}(x+5)(x^{2}-35x+120)$	70
36	$(01^{16}0^71^{12})$	$x^{6}(x+1)^{27}(x+8)(x^{2}-35x+168)$	70
36	$(01^90^81^{18})$	$x^{7}(x+1)^{26}(x+9)(x^{2}-35x+144)$	70
36	$(01^40^71^{24})$	$x^{6}(x+1)^{27}(x+8)(x^{2}-35x+84)$	70
36	(010^41^{30})	$x^{3}(x+1)^{30}(x+5)(x^{2}-35x+24)$	70
36	(01^{35})	$(x+1)^{35}(x-35)$	70

Tabela 1: Ilustração do Teorema 3.4 para n = 6.

Referências

- [1] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, 2012.
- [2] V. Chvátal, P. L. Hammer, Aggregation of inequalities in integer programming, in Studies in Integer Programming, Annals of Discrete Math, vol. 1, 145–162, 1977.
- [3] N. M. de Abreu, R. R. Del-Vecchio, C. T. Vinagre e D. Stevanović, Introdução a Teoria Espectral de Grafos com Aplicações. São Carlos, SP: CNMAC, 2007.
- [4] I. Gutman, The energy of graph, Ber. Math. Statist. Sekt. Forschunszenturm Graz, 1-22,1978.
- [5] D. P. Jacobs, V. Trevisan, and F. Tura, Computing the Characteristic Polynomial of Threshold Graph, Journal of Graph Algorithms and Applications, vol. 18, 709-719, 2014.
- [6] D. P. Jacobs, V. Trevisan, and F. Tura, *Eigenvalues and Energy in Threshold Graphs*, Linear Algebra and its Applications, vol. 465, 412-425, 2015.
- [7] N.V.R. Mahaved, U. N. Peled, Threshold graphs and related topics, Elsevier, 1995.
- [8] I. Sciriha and S. Farrugia, On the spectrum of threshold graphs, ISRN, Discrete Mathematics, 2011, DOI: 10.5402/2011/108509.