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Abstract. This paper extends the robustness analysis of the fuzzy connectives based on
the pointwise sensitivity of such operators. Starting with an evaluation of the sensitivity
in fuzzy negations, triangular norms and conorms, we apply the results in the class of
fuzzy difference operators and their dual construction. The paper formally states that the
robustness preserves the projection functions related to fuzzy (co)difference operators.
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1 Introduction

Scientific research areas in which the degrees of certainty are only approximately de-
fined, it seems reasonable to require that the corresponding system is the least sensitive to
small changes in the inputs. Robustness analysis provides an estimation of perturbation
caused by input parameters contributing to identify criteria for choices of fuzzy reasoning
methods in real applications as industrial robotics and electronics industrial systems [7–9].

The concepts of maximum and average perturbations of fuzzy sets have been proposed,
estimating maximum and average perturbation parameters for various fuzzy reasoning
methodologies [3,10,11]. In [6,15], by reducing sensitivity in the corresponding pointwise
components of fuzzy connectives it is possible to estimate the sensitivity of fuzzy connec-
tives in output data by propagation from small input changes. Following this approach,
this paper consolidates the study of δ-sensitivity of fuzzy connectives (FCs) according with
results previously stated in [12,18,19] and related to fuzzy negations, triangular (co)norms,
fuzzy (co)implications and fuzzy X(N)or connectives.

Fuzzy difference operators are frequently applied in fuzzy relations in order to ob-
tain similarity, correlation, distance and entropy of fuzzy measures. In particular, this
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paper aims to study the robustness analysis defined on δ-sensitivity of fuzzy difference
operators which are characterized as representable fuzzy connectives (FCs), meaning that
they can be defined as compositions of aggregations and fuzzy complement. Moreover,
as binary connectives, the δ-sensitivity analysis of fuzzy difference operators considers the
monotonicity property of both arguments restricted to their left and right projections.

Since δ-sensitivity on interpretation of FCs is closely related to (non-)truth condi-
tional fuzzy rules, this work also focusses on their corresponding class of representable
(co)difference operators, according with robustness analysis proposed in [12].

Thus, the δ-sensitivity of fuzzy (co)difference operators is discussed, based on the
study of δ-sensitivity of both classes of triangular (co)norms and strong fuzzy negations.
When the standard fuzzy negation NS is considered such analysis is applied to NS-dual
aggregation subclasses, the product triangular norm TP and the algebraic sum SP .

The notion of δ-sensitivity on a dual fuzzy connective is relevant to study its fuzzy
intuitionistic extension, which is characterized by the non-complementary relationship be-
tween the membership and non-membership functions [1]. Such interpretation improves
the study of the stability of systems based on intuitionistic fuzzy rules and measure-
ment relationships. In [13], focusing on their pointwise components obtained by related
membership and non-membership functions, the δ-sensitivity analysis related to difference
operators is extended to the Atanassov’s intuitionistic approach [1], as presented in [17].
And, by taking the class of strong fuzzy negation (as the standard negation NS), the pa-
per formally states that the sensitivity of an n-order fuzzy connective at a point x ∈ Un

preserves its projections related to the sensitivity of its fuzzy approach at the same point,
when representable fuzzy connectives are considered.

In order to study the robustness on the class of fuzzy (co)difference operators, the
paper is organized as follows. Firstly, the preliminaries describe the basic concepts of
FCs. The δ-sensitivity of FCs and general results of robustness of FCs are reported in
Section 3. Additionally, Subsection 3.1 considers the robustness in the class of fuzzy
difference operators, which can be obtained by fuzzy negations and triangular norms, also
including their dual construction. Final remarks are considered in the conclusion.

2 Preliminaries

By recalling some basic concepts of FCs we firstly report notions of FL as conceived
by Zadeh [16] concerning negations, difference [5] and (co)difference.

Let U = [0, 1] be the unit interval of real numbers. Recall that a function N : U→U
is a fuzzy negation if it satisfies, for all∈U the properties:
N1 : N(0)=1 and N(1)=0; N2 : If x≥y then N(x)≤N(y).
A fuzzy negation satisfying the involutive property:
N3 N(N(x)) = x, ∀x ∈ U ,
is called a strong fuzzy negation (SFN), e.g. the standard negation NS(x) = 1− x.

When x = (x1, x2, . . . , xn) ∈ Un and N is a fuzzy negation, the following notation is
considered: N(x) = (N(x1), N(x2), . . . , N(xn)).
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Let N be a negation. The N-dual function of f : Un → U is given by:

fN (x) = N(f(N(x))), ∀x ∈ Un. (1)

A function T :U2→U is a triangular-norm (t-norm) if and only if it satisfies, for all
x, y, z ∈ U , the following properties.

T1: T (x, 1) = x; S1: S(x, 0) = x;
T2: T (x, y) = T (y, x); S2: S(x, y) = S(y, x);
T3: T (x, T (y, z)) = T (T (x, y), z); S3: S(x, S(y, z)) = S(S(x, y), z);
T4: if x ≤ x′ and y ≤ y′, T (x, y) ≤ T (x′, y′). S4: if x ≤ x′ and y ≤ y′, S(x, y) ≤ S(x′, y′).

Let N be a fuzzy negation on U . The mappings TN , SN : U2 → U denote the N -dual
functions of a t-norm T and a t-conorm S, respectively defined as:

TN (x, y) = N(T (N(x), N(y))), SN (x, y) = N(S(N(x), N(y))). (2)

Typical examples of t-norms and t-conorms, respectively, are the following:

1. Minimum and maximum: TM (x, y) = min{x, y} and SM (x, y) = max{x, y};

2. Product and probabilistic sum: TP (x, y) = xy and SP (x, y) = x+ y − xy;

3.  Lukaziewski t-norm and t-conorm: TL(x, x) = max(x + y − 1, 0) and SL(x, y) =
min(x+ y, 1);

The following definition of fuzzy difference operators extends the axioms from [5, Def-
inition 4] to dual construction of fuzzy co-difference operators.

Definition 2.1. A function D(E) : U2 → U is a fuzzy (co)difference if it satisfies, for
all x, y, z ∈ U , the following properties:
D0: D(x, y) ≤ x; E0: E(x, y) ≥ x;
D1: D(x, 0) = x; E1: E(x, 1) = x;
D2: y≤z → D(x, y)≥D(x, z); E2: y≤z → E(x, y)≥E(x, z);
D3: y≤z → D(y, x)≤D(z, x); E3: y≤z → E(y, x)≤E(z, x);
D4: D(1, x) = ND(x) is a fuzzy negation. E3: E(0, x) = NE(x) is a fuzzy negation.

Let N be a fuzzy negation on U . The mappings DN , EN : U2 → U denote the N -dual
functions of a fuzzy (co)difference D (E), respectively defined as:

DN (x, y) = N(D(N(x), N(y))), EN (x, y) = N(E(N(x), N(y))). (3)

Proposition 2.1. A fuzzy (co)difference DT,N , (ES,N ) : U2 → U verifies the properties:

DT,N (x, y) = T (x,N(y)) ES,N (x, y) = S(N(x), y) (4)

Proof. For all x, y, z ∈ U , the following is verified:
D0: If y ≤ 1 DT,N (x, y) = T (x,N(y)) ≤ T (x,N(0)) = T (x, 1) = x.
D1: D(x, 0) = T (x,N(0)) = T (x, 1) = x.
D2: If x ≤ y then D(x, z) = T (x,N(z)) ≤ T (y,N(z)) = D(y, z).
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Table 1: Examples in the classes C(DT,N ) and C(ES,N )

DT,N (x, y) = T (x,N(y)) ES,N (x, y) = S(x,N(y))

DTP ,NS
(x, y) = x− xy ESP ,NS

(x, y) = 1− y + xy

DTM ,NS
(x, y) = min(x, 1− y) ESM ,NS

(x, y) = max(x, 1− y)

DTL,NS
(x, y) = max(x− y, 0) ESL,NS

(x, y) = min(x− y + 1, 1)

D3: If x ≤ y, it implies that D(z, x) = T (z,N(x)) ≥ T (z,N(y)) = D(z, y).
D4: D(1, x) = T (1, N(x)) = N(x).
Therefore, DT,N fulfils D0−D4 in Definition2.1. Analogously, one can prove that ES,N

fulfils E0−E4. Therefore, Proposition 2.1 is verified.

Based on typical examples of t-norms and t-conorms previously reported, Table 1
presents some examples in the classes C(DT,N ) and C(ES,N ), related to fuzzy difference
operators and corresponding NS-dual constructions.

3 Pointwise sensitivity of fuzzy connectives

Based on [6] and [12], the study of a δ-sensitivity of n−order function f at point x on
the domain U is considered, in the context of robustness of fuzzy logic, mainly related to
the class of (S,N)-implications.

Definition 3.1. [6, Definition 1] Let f : Un → U be an n−order function, δ ∈ U and
x = (x1, x2, . . . xn), y = (y1, y2, . . . yn) ∈ Un. The δ-sensitivity of f at point x, denoted
by ∆f (x, δ), is given by

∆f (x, δ) = sup{|f(x)− f(y)| : y ∈ Un and
∨

(x,y) ≤ δ} (5)

wherever
∨

(x,y) = max{|xi − yi| : i = 1, . . . , n}. Additionally, the maximum δ sensi-
tivity of f , denoted as ∆f (δ), is defined as follows:

∆f (δ) =
∨

x∈Un

∆f (x, δ). (6)

Proposition 3.1. [12, Theorem 1] If N = NS and fN is the N -dual function of f then
the sensitivity of fN at point x is given by

∆fN (x, δ) = ∆f (N(x), δ). (7)

Now, we investigate the δ-sensitivity in FCs, in terms of Definition 3.1 based on results
previously presented in [6]. In order to provide an easier notation, when f : U2 → U and
x = (x, y) ∈ U2, consider the following notations:

fbxe ≡ f((x− δ) ∨ 0, (y + δ) ∧ 1); fdxc ≡ f((x+ δ) ∧ 1, (y − δ) ∨ 0).

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0095 010095-4 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0095


5

Table 2: Examples in the classes C(DT,N ) and C(ES,N )which are related to fuzzy difference
operators and their corresponding NS-dual constructions

∆DTP ,NS
((0, 0), δ) ∆DTM,NS

((0, 0), δ) ∆DTL,NS
((0, 0), δ)

x = (0, 0) δ δ δ

x = (0, 1) δ2 δ δ

x = (1, 0) δ δ 2δ

x = (1, 1) 2δ − δ2 δ δ

Proposition 3.2. [6, Theorem 1] Consider f :U2→U , δ ∈U and x = (x, y)∈U2. The
sensitivity of f at point x is given by the folllowing cases:
(i) if f is increasing w.r.t. its variables then we have that:

∆f (x, δ) = (fdxe − fN (x)) ∨ (fbxc − f(x)); (8)

(ii) if f verifies both properties, 1−place isotonicity and 2−place antitonicity, then:

∆f (x, δ) = (fbxe − f(x)) ∨ (f(x)− fdxc) (9)

Proposition 3.3. [12] The δ-sensitivity of a t-(co)norm T (S) is given by Eq. (8):

∆T (x, δ) = (T bxe − T (x)) ∨ (T (x)− T dxc) (10)

∆S(x, δ) = (Sbxe − S(x)) ∨ (S(x)− Sdxc) (11)

3.1 δ-sensibility of fuzzy (co)difference operators

In this section we study the robustness of fuzzy (co)difference operators based on the
δ-sensibility analysis.

Proposition 3.4. The δ-sensitivity of the fuzzy (co)difference operator is given by Eq. (12):

∆D(x, δ) = (Dbxe −D(x)) ∨ (D(x)−Ddxc) (12)

∆E(x, δ) = (Ebxe − E(x)) ∨ (E(x)− Edxc) (13)

Proof. Straightforward Propositions 2.1.

Remark 3.1. By Eqs. (12) and (7) for the first pair of NS-dual fuzzy difference operators
presented in Table 1, we obtain the following:
∆DTP ,NS

((0, 0), δ) = δ ∨ 0 = δ = ∆ESP ,NS
((1, 1), δ) ;

∆DTP ,NS
((0, 1), δ) = δ2 ∨ 0 = δ2 = ∆ESP ,NS

((1, 0), δ) ;
∆DTP ,NS

((1, 1), δ) = δ ∨ 0 = δ = ∆ESP ,NS
((0, 0), δ); and

∆DTP ,NS
((1, 0), δ) = 0 ∨ (2δ − δ2) = ∆ESP ,NS

((0, 1), δ).
Analogously, it is easy to obtain the δ sensitivity at the endpoints of U for the other pairs
of NS-dual fuzzy difference operators reported in Table 1. See all results in Table 2.
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Proposition 3.5. The maximum δ sensitivity of a (co)difference operator is given by:

∆D(δ) =
∨

x∈Un

∆D(x, δ) =
∨

x∈Un

∆E(x, δ) = ∆E(δ) (14)

Proof. Straightforward.

4 Conclusion

The main contribution of this work is concerned with the study of robustness on
fuzzy approach related to the fuzzy (co)difference operators which can be obtained by
aggregation operators as t-(co)norms and of (strong) fuzzy negations. Additional studies,
considering δ-sensitivity of symmetric difference operator and their corresponding dual
construction should be carried out. In further work, we focus on the sensitivity of fuzzy
inference dependent on intuitionistic fuzzy rules based on intuitionistic fuzzy connectives,
including the extension of the robustness studies of R-(co)implications. Furthermore, this
project aims to investigate an application of its main results in the robustness analysis of
operators (erosion, dilation, closing, opening) used in the mathematical morphology.
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