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Abstract. This work extends the study of properties related to the Generalized Atanassov’s
Intuitionistic Fuzzy Index, by considering the concept of conjugate fuzzy implications,
mainly interested in the class of S-implications.

Keywords. Intuitionistic Fuzzy Index, Intuitionistic Fuzzy Automorphims, S-implications

In order to deal with the available information in fuzzy reasoning systems, the Atanas-
sov’s intuitionistic fuzzy approach allows two non-complementary freedom degrees named
as membership and non-membership degrees. The flexible relationship between these non
complementary membership functions is formally expressed as the Atanassov-intuitionistic
fuzzy index (A-IFIx), also called as hesitancy (indeterminance) degree of an element in
an Atanassov-intuitionitic fuzzy set. Since there are applications in which experts do not
have precise knowledge, it formalizes the expression related to the expert uncertainties
or lack of information in identifying a particular membership function. In addition, the
A-IFIx provides a measure of the lack of information for or against a given proposition
based on Atanassov-intuitionistic fuzzy logic (A-IFL).

Despite so many applications of A-IFI in modelling inference rules in fuzzy reasoning,
in [4] a new concept – the Generalized Atanassov’s Intuitionistic Fuzzy Index (A-GIFIx) is
characterized in terms of fuzzy implication operators which is described by a constructive
method making use of automorphisms. In [5], by means of special aggregation functions
applied to the A-GIFIx, the Atanassov’s intuitionistic fuzzy entropy is discussed and some
examples are analysed.

Extending these previous researches, this work contributes with the study of properties
related to A-GIFIx, considering the concept of conjugate fuzzy implications, mainly inter-
ested in the class of S-implications and corresponding dual constructions. Additionally,
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A-GIFIx associated with both standard negation and well known fuzzy implications are
considered: Lukaziewicz, Reichenbach, Gaines-Rescher and I30 [9].

The preliminaries describe the basic properties of fuzzy connectives and basic concepts
of A-IFL. The study of the A-GIFIx and general results in the analysis of its properties
are stated in Section 2. Final remarks are reported in the conclusion.

1 Preliminaries

We firstly give a brief account on FL, keeping this paper self-contained by reporting
basic concepts of automorphisms, fuzzy negations on U = [0, 1] and main properties of
fuzzy implications.

1.1 Fuzzy connectives

By [8, Def. 4.1], an automorphism φ : U → U is a bijective, strictly increasing
function:

A1 : x ≤ y iff φ(x) ≤ φ(y), ∀x, y ∈ U .

In [6], an automorphism φ : U → U is a continuous, strictly increasing function such that

A2 : φ(0) = 0 and φ(1) = 1.

LetAut(U) be the set of all automorphisms. Automorphisms are closed under composition,
φ ◦ φ′ ∈ Aut(U), ∀φ, φ′ ∈ Aut(U), and there exists the inverse φ−1 ∈ U , such that

A3 : φ ◦ φ−1 = idU , ∀φ ∈ Aut(U).

Thus, (Aut(U), ◦) is a group, with the identity function being the neutral element.
The action of an automorphism φ : U → U on a function f : Un → U , called conjugate
of f , and given by

fφ(x1, . . . , xn) = φ−1(f(φ(x1), . . . , φ(xn))). (1)

A function N : U → U is a fuzzy negation (FN) if

N1 : N(0) = 1 and N(1) = 0; N2 : If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ U .

FNs satisfying the involutive property given below are called strong fuzzy negations [6]:

N3 : N(N(x)) = x, ∀x ∈ U .

By [7], a fuzzy implication I : U2 −→ U satisfies the conditions:
I1: If x ≤ z then I(x, y) ≥ I(z, y); I2: If y ≤ z then I(x, y) ≤ I(x, z)
I3: I(0, y) = 1 ; I4: I(x, 1) = 1
I5: I(1, 0) = 0.

Several reasonable properties may be required for fuzzy implications:
I6: I(1, y) = y ; I7: I(x, I(y, z)) = I(y, I(x, z)) ;
I8: I(x, y) = 1⇔ x ≤ y; I9: I(x, y) = I(N(y), N(x)), N is a SFN;
I10: I(x, y) = 0⇔ x = 1 and y = 0;

If I : U2 → U is a fuzzy implication satisfying I1, then the function NI : U → U
defined by

NI(x) = I(x, 0) (2)
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is a fuzzy negation [3, Lemma 2.1].
Let S be a t-conorm and N be a fuzzy negation. An S-implication [3, 6, 7] is a fuzzy

implication IS,N : U2 −→ U defined by

IS,N (x, y) = S(N(x), y). (3)

In this paper, such S-implications are called strong S-implications. In [10, Theorem
3.2] I : U2 → U is a strong S-implication if and only if it satisfies I1,I2, I6, I7 and I9. a
characterization of strong S-implications considering I1, I4 and I7. Strong S-implications
satisfy I3, I4, I9 and properties below:
I11: I(x, y) ≥ NI(x); I12: I(x, y) = 0 if and only if x = 1 and y = 0.

1.2 Intuitionistic Fuzzy Connectives

According with [1], an intuitionistic fuzzy set (IFS) AI in a non-empty, universe χ, is
expressed as AI = {(x, µA(x), νA(x)) : x∈χ, µA(x) + νA(x))≤ 1}. Thus, an intuitionistic
fuzzy truth value of an element x in an IFS AI is related to the ordered pair (µA(x), νA(x)).
Moreover, an IFS AI generalizes a FS A = {(x, µA(x)) : x ∈ χ}, since νA(x), which
means that the non-membership degree of an element x, is less than or equal to the
complement of its membership degree µA(x), and therefore νA(x) is not necessarily equal
to its complement 1− µA(x).

Let Ũ = {(x1, x2) ∈ U2|x1 ≤ NS(x2)} be the set of all intuitionistic fuzzy values and
lŨ , rŨ : Ũ→U be the projection functions on Ũ , which are given by lŨ (x̃) = lŨ (x1, x2) = x1
and rŨ (x̃) = rŨ (x1, x2) = x2, respectively.

Thus, for all x̃ = (x̃1, . . . , x̃n) ∈ Ũn, such that x̃i = (xi1, xi2) and xi1 ≤ NS(xi2) when
1 ≤ i ≤ n, considering lŨn , rŨn : Ũn → Un as the projections given by:

lŨn(x̃) = (lŨ (x̃1), lŨ (x̃2), . . . , lŨ (x̃n)) = (x11, x21, . . . xn1); (4)

rŨn(x̃) = (rŨ (x̃1), rŨ (x̃2), . . . rŨ (x̃n)) = (x12, x22, . . . xn2). (5)

By [1], for x̃, ỹ ∈ Ũ , the order relation ≤Ũ is given as x̃ ≤Ũ ỹ ⇔ x1 ≤ y1 and x2 ≥ y2,
such that 0̃ = (0, 1) ≤Ũ x̃ and 1̃ = (1, 0) ≥Ũ x̃. Moreover, the expression is known:

x̃ �Ũ ỹ ⇔ x1 ≤ y1 and x2 ≤ y2. (6)

Additonally, a function πA : χ→U , called an intuitionistic fuzzy index (IFIx) of an
element x ∈ χ, related to an IFS A, is given as

πA(x) = NS(µA(x) + νA(x)),∀x ∈ χ, µA(x) + νA(x) ≤ 1. (7)

Such function provides the hesitancy (indeterminance) degree of x in A. Based on this,
the accuracy function hA : χ→U provides the accuracy degree of x in A, given as:

hA(x) + πA(x) = 1 (8)

Therefore, the largest πA(x) (hA(x)), the higher the hesitancy (accuracy) degree of x in
A.
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An intuitionistic fuzzy negation (IFN shortly) NI : Ũ → Ũ satisfies, for all x̃, ỹ ∈ Ũ ,
the following properties:
NI1 : NI(0̃) =NI(0, 1) = 1̃ and NI(1̃) =NI(1, 0) = 0̃;
NI2: If x̃≥ ỹ then NI(x̃)≤NI(ỹ).
Additionally, NI is a strong intuitionistic fuzzy negation (SIFN) verifying the condi-
tion:
NI3: NI(NI(x̃)) = x̃, ∀x̃ ∈ Ũ .

Consider NI as IFN in Ũ and f̃ : Ũn → Ũ . For all x̃ = (x̃1, . . . , x̃n) ∈ Ũn, the NI-dual
intuitionistic function of f̃ , denoted by f̃NI : Ũn → Ũ , is given by:

f̃NI (x̃) = NI(f̃(NI(x̃1), . . . , NI(x̃n))). (9)

When ÑI is a SIFN, f̃ is a self-dual intuitionistic function. Additionally, by [2], a
SIFN NI : Ũ → Ũ is a SIFN iff there exists a SFN N : U → U such that: NI(x̃) =
(N(NS(x2)), NS(N(x1))). Additionally, if N = NS , we have that NI(x̃) = (x2, x1).

2 Generalized Atanassov’s Intuitionistic Fuzzy Index

Definition 2.1. [5, Definition 1], A function Π : Ũ → U is called a generalized intu-
itionistic fuzzy index associated with a SFN N (A − GIFIx(N)) if, for all x, y, z, t ∈ U ,
it holds that:
Π1: Π(x, y) = 1 if and only if x = y = 0; Π2: Π(x, y) = 0 if and only if x+ y = 1;
Π3: if (z, t) �Ũ (x, y) then Π(x, y) ≤ Π(z, t); Π4: Π(x, y) = Π(NI(x, y)) when

NI is a SIFN.

Proposition 2.1. [5, Theorem 3] Let NI be a SFN. A function Π : Ũ → U is a A −
GIFIx(N) iff there exists a function I : U2 → U verifying I1, I8,I9 and I10 such that

ΠI(x, y) = N(I(1− y, x)). (10)

See Table 2, illustrating Prop. 2.2 by presenting examples of A-GIFIx associated with
following fuzzy implications: R0, Lukaziewicz, Reichenbach, Gaines-Rescher and I30 [9].

2.1 A-GIFIx and conjugate fuzzy implications

Proposition 2.2. Let NI be a SFN, φ ∈ Aut(U) and Iφ : U2 → U be a φ-conjugate of
I : U2 → U . A function Π : Ũ → U given by

ΠIφ(x, y) = Nφ(Iφ(1− y, x)). (11)

is a A−GIFIx(N) whenever ΠI : Ũ → U is also a A−GIFIx(N).

Proof. (⇒) Suppose that Π : Ũ → U , ΠI(x, y) = N(I(1 − y, x)), is a A − GIFIx(N).
Then, I, Iφ : U2 → U verify I1, I8,I9 and I10. For ΠIφ(x, y) = Nφ(Iφ(1 − y, x)) the
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Table 1: Generalized intuitionistic fuzzy index associated with the standard negation.

Fuzzy Implications A−GIFIx

I0(x, y) =

{
1, if x ≤ y,
max(1− x, y), otherwise;

Π0(x, y) =

{
0, if x+ y = 1,
1−max(x, y), otherwise;

ILK(x, y) =

{
1, if x ≤ y,
1− x+ y, otherwise;

ΠLK(x, y) =

{
0, if x+ y = 1,
1− x− y, otherwise;

IRB(x, y) =

{
1, if x ≤ y,
1− x+ xy, otherwise;

ΠRB(x, y) =

{
0, if x+ y = 1,
1− x− y + xy, otherwise;

IGR(x, y) =

{
1, if x ≤ y,
0, otherwise;

ΠGR(x, y) =

{
0, if x+ y = 1,
1, otherwise;

I30(x, y) =

{
min(1−x, y, 0.5), if 0<x<y<1,
min(1− x, y), otherwise;

Π30(x, y) =

1−min(x, y, 0.5), if 0<x, y<1
and x+y=1,

1−min(x, y), otherwise;

following holds:

Π1 : Nφ(Iφ(1− y, x)) = 1 ⇔ Iφ(1− y, x) = 0, by N3

⇔ φ−1(I(φ(1− y), φ(x))) = 0, by Eq.(1)

⇔ I(φ(1− y), φ(x))) = 0, by A2, A3

⇔ φ(1− y) = 1 andφ(x) = 0, by I10

⇔ 1− y = 1 andx = 0⇔ y = 0 andx = 0, by A2

Π2 : Nφ(Iφ(1− y, x)) = 0 ⇔ Iφ(1− y, x) = 1, by N3

⇔ φ−1(I(φ(1− y), φ(x))) = 1, by Eq.(1)

⇔ I(φ(1− y), φ(x))) = 1, by A2, A3

⇔ φ(1− y) = 1 ≤ φ(x) = 0, by I9

⇔ 1− y ≤ x⇔ x+ y = 1, by A1

Π3 : (z, t) � (x, y) ⇒ z ≤ x and t ≤ y, by Eq.(6)

⇒ z ≤ x andNS(t) ≤ NS(y), by N2

⇒ φ(z) ≤ φ(x)andφ(1− t) ≥ φ(1− y), by A1

⇒ Iφ(1− y, x) ≥ Iφ(1− t, z), by I1

⇒ N(Iφ(1− y, x)) ≤ Nφ(Iφ(1− t, z)), by N2

⇒ ΠIφ(x, y) ≤ ΠIφ(z, t), by Eq.(11)

Π4 : When NI is a SIFN, Π(NI(x, y)) = ΠIφ(N(NS(y)), NS(N(x))), by Eq.(2)

= Nφ(Iφ(NS
2(N(x)), N(NS(y))), by Eq.(11)

= Nφ(Iφ(N(x), N(NS(y))), by N3

= Nφ(Iφ(N2(NS(y)), N2(x)), by I9

= NφIφ(Iφ(NS(y), x) = Π(x, y), by N3

Therefore, Proposition 2.2 holds.
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Table 2: A-GIFIx associated with the automorphisms φ(x) = x2 and φ−1 =
√
x.

Fuzzy Implications A−GIFIx

Iφ0 (x, y) =

{
1, if x ≤ y,√

max((1− x)2, y2), otherwise;
ΠIφ0

(x, y) =

{
0, if x+ y = 1,

1−
√

max(y2, x2), otherwise;

IφLK(x, y) =

{
1, if x ≤ y,√

1− x2 + y2, otherwise;
ΠIφLK

(x, y) =

{
0, if x+ y = 1,

1−
√

2y − y2 + x2, otherwise;

IφRB(x, y) =

{
1, if x ≤ y,√

1− x2 + x2y2, otherwise;
ΠIφRB

(x, y) =

{
0, if x+ y = 1,

1−
√
x2 + (1−x2)(2y−y2), otherwise;

IφGR(x, y) =

{
1, if x ≤ y,
0, otherwise;

ΠIφGR
(x, y) =

{
0, if x+ y = 1,
1, otherwise;

Iφ30(x, y) =


√

min(1− x2, y2, 0.5),
if 0 < x < y < 1,√
min((1− x)2, y2), otherwise;

ΠIφ30
(x, y) =

1−
√

min(1− (1− y)2, x2, 0.5),
if 0 < x, y < 1 and x+ y = 1,

1−
√

min(1−(1−y)2, x2), otherwise;

See Table 2.1, presenting the corresponding A − GIFIx(N) associated with the con-
jugate fuzzy implications related to Table 2:

2.2 A-GIFIx S-implications

By [2], a continuous fuzzy implication I satisfies properties I7 and I8 iff it is conjugate

with the Lukasiewicz implication (IφRH) and the following proposition holds:

Proposition 2.3. [5, Proposition 2] Let φ1, φ2 be automorphisms on U . Then

Π
IφRH

(x) = φ−11 (φ2(1− x2)− φ2(x1)),∀x ∈ U, (12)

is a A-GIFIx associated with the SFN associated with a SFN N(x) = φ−12 (1− φ2(x)).

Proposition 2.4. Let NI be a SFN. A function Π : Ũ → U is a A−GIFIx(N) iff there
exists an (S,N)-implication IS,N : U2 → U such that

ΠI(x, y) = N(S(N(1− y), x)). (13)

Proof. ΠI(x, y) = N(IS,N (1− y, x)) = N(S(N(1− y), x)), for all (x, y) ∈ Ũ .

Remark 2.1. When N = NS, Eq.(13) can be expressed as ΠI(x, y) = NS(S(x, y)).

3 Conclusion

In this work, the concept of generalized Atanassov’s intuitionistic fuzzy index was
studied from different construction methods, in particular, by means of fuzzy S-implication
operators and automorphisms. Further work considers the extension of such study related
to properties verified by the A-GIFIX to the interval-valued intuitionistic fuzzy approach.
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