Trabalho apresentado no CNMAC, Gramado - RS, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Generalized Atanassov's Intuitionistic Fuzzy Index and Conjugate with S-implications

Rosana Zanotelli¹ Lidiane da Silva² Miriam Born³ Renata Reiser⁴ Adenauer Yamin⁵ Programa de Pós-graduação em Computação, CDTEC, UFPEL, Pelotas, RS

Abstract. This work extends the study of properties related to the Generalized Atanassov's Intuitionistic Fuzzy Index, by considering the concept of conjugate fuzzy implications, mainly interested in the class of S-implications.

Keywords. Intuitionistic Fuzzy Index, Intuitionistic Fuzzy Automorphims, S-implications

In order to deal with the available information in fuzzy reasoning systems, the Atanassov's intuitionistic fuzzy approach allows two non-complementary freedom degrees named as membership and non-membership degrees. The flexible relationship between these non complementary membership functions is formally expressed as the Atanassov-intuitionistic fuzzy index (A-IFIx), also called as hesitancy (indeterminance) degree of an element in an Atanassov-intuitionitic fuzzy set. Since there are applications in which experts do not have precise knowledge, it formalizes the expression related to the expert uncertainties or lack of information in identifying a particular membership function. In addition, the A-IFIx provides a measure of the lack of information for or against a given proposition based on Atanassov-intuitionistic fuzzy logic (A-IFL).

Despite so many applications of A-IFI in modelling inference rules in fuzzy reasoning, in [4] a new concept – the Generalized Atanassov's Intuitionistic Fuzzy Index (A-GIFIx) is characterized in terms of fuzzy implication operators which is described by a constructive method making use of automorphisms. In [5], by means of special aggregation functions applied to the A-GIFIx, the Atanassov's intuitionistic fuzzy entropy is discussed and some examples are analysed.

Extending these previous researches, this work contributes with the study of properties related to A-GIFIx, considering the concept of conjugate fuzzy implications, mainly interested in the class of S-implications and corresponding dual constructions. Additionally,

¹rzanotelli@inf.ufpel.edu.br

²lcdsilva@inf.ufpel.edu.br

³mbborn@inf.ufpel.edu.br

⁴reiser@inf.ufpel.edu.br

⁵adenauer@inf.ufpel.edu.br

$\mathbf{2}$

A-GIFIx associated with both standard negation and well known fuzzy implications are considered: Lukaziewicz, Reichenbach, Gaines-Rescher and I_{30} [9].

The preliminaries describe the basic properties of fuzzy connectives and basic concepts of A-IFL. The study of the A-GIFIx and general results in the analysis of its properties are stated in Section 2. Final remarks are reported in the conclusion.

1 Preliminaries

We firstly give a brief account on FL, keeping this paper self-contained by reporting basic concepts of automorphisms, fuzzy negations on U = [0, 1] and main properties of fuzzy implications.

1.1 Fuzzy connectives

By [8, Def. 4.1], an **automorphism** $\phi : U \to U$ is a bijective, strictly increasing function:

A1 : $x \le y$ iff $\phi(x) \le \phi(y), \forall x, y \in U$.

In [6], an automorphism $\phi: U \to U$ is a continuous, strictly increasing function such that **A2**: $\phi(0) = 0$ and $\phi(1) = 1$.

Let Aut(U) be the set of all automorphisms. Automorphisms are closed under composition, $\phi \circ \phi' \in Aut(U), \forall \phi, \phi' \in Aut(U)$, and there exists the inverse $\phi^{-1} \in U$, such that **A3** : $\phi \circ \phi^{-1} = id_U, \forall \phi \in Aut(U)$.

Thus, $(Aut(U), \circ)$ is a group, with the identity function being the neutral element. The action of an automorphism $\phi: U \to U$ on a function $f: U^n \to U$, called **conjugate** of f, and given by

$$f^{\phi}(x_1, \dots, x_n) = \phi^{-1}(f(\phi(x_1), \dots, \phi(x_n))).$$
(1)

A function $N: U \to U$ is a *fuzzy negation* (FN) if

N1 : N(0) = 1 and N(1) = 0; **N2** : If $x \ge y$ then $N(x) \le N(y), \forall x, y \in U$.

FNs satisfying the involutive property given below are called *strong* fuzzy negations [6]:

$$N3 : N(N(x)) = x, \, \forall x \in U.$$

By [7], a fuzzy implication $I: U^2 \longrightarrow U$ satisfies the conditions: **I1**: If $x \le z$ then $I(x, y) \ge I(z, y)$; **I2**: If $y \le z$ then $I(x, y) \le I(x, z)$ **I3**: I(0, y) = 1; **I4**: I(x, 1) = 1 **I5**: I(1, 0) = 0. Several reasonable properties may be required for fuzzy implications: **I6**: I(1, y) = y; **I7**: I(x, I(y, z)) = I(y, I(x, z)); **I8**: $I(x, y) = 1 \Leftrightarrow x \le y$; **I9**: I(x, y) = I(N(y), N(x)), N is a SFN; **I10**: $I(x, y) = 0 \Leftrightarrow x = 1$ and y = 0;

If $I: U^2 \to U$ is a fuzzy implication satisfying **I1**, then the function $N_I: U \to U$ defined by

$$N_I(x) = I(x,0) \tag{2}$$

3

is a fuzzy negation [3, Lemma 2.1].

Let S be a t-conorm and N be a fuzzy negation. An S-implication [3,6,7] is a fuzzy implication $I_{S,N}: U^2 \longrightarrow U$ defined by

$$I_{S,N}(x,y) = S(N(x),y).$$
 (3)

In this paper, such S-implications are called *strong S-implications*. In [10, Theorem 3.2] $I: U^2 \to U$ is a *strong S-implication* if and only if it satisfies **I1,I2**, **I6**, **I7** and **I9**. a characterization of strong S-implications considering **I1**, **I4** and **I7**. Strong S-implications satisfy **I3**, **I4**, **I9** and properties below:

I11: $I(x, y) \ge N_I(x)$; **I12**: I(x, y) = 0 if and only if x = 1 and y = 0.

1.2 Intuitionistic Fuzzy Connectives

According with [1], an intuitionistic fuzzy set (IFS) A_I in a non-empty, universe χ , is expressed as $A_I = \{(x, \mu_A(x), \nu_A(x)) : x \in \chi, \mu_A(x) + \nu_A(x)) \leq 1\}$. Thus, an intuitionistic fuzzy truth value of an element x in an IFS A_I is related to the ordered pair $(\mu_A(x), \nu_A(x))$. Moreover, an IFS A_I generalizes a FS $A = \{(x, \mu_A(x)) : x \in \chi\}$, since $\nu_A(x)$, which means that the non-membership degree of an element x, is less than or equal to the complement of its membership degree $\mu_A(x)$, and therefore $\nu_A(x)$ is not necessarily equal to its complement $1 - \mu_A(x)$.

Let $\tilde{U} = \{(x_1, x_2) \in U^2 | x_1 \leq N_S(x_2)\}$ be the set of all intuitionistic fuzzy values and $l_{\tilde{U}}, r_{\tilde{U}} : \tilde{U} \to U$ be the projection functions on \tilde{U} , which are given by $l_{\tilde{U}}(\tilde{x}) = l_{\tilde{U}}(x_1, x_2) = x_1$ and $r_{\tilde{U}}(\tilde{x}) = r_{\tilde{U}}(x_1, x_2) = x_2$, respectively.

Thus, for all $\tilde{\mathbf{x}} = (\tilde{x}_1, \dots, \tilde{x}_n) \in U^n$, such that $\tilde{x}_i = (x_{i1}, x_{i2})$ and $x_{i1} \leq N_S(x_{i2})$ when $1 \leq i \leq n$, considering $l_{\tilde{U}^n}, r_{\tilde{U}^n} : \tilde{U}^n \to U^n$ as the projections given by:

$$l_{\tilde{U}^n}(\tilde{\mathbf{x}}) = (l_{\tilde{U}}(\tilde{x}_1), l_{\tilde{U}}(\tilde{x}_2), \dots, l_{\tilde{U}}(\tilde{x}_n)) = (x_{11}, x_{21}, \dots, x_{n1});$$
(4)

$$r_{\tilde{U}^n}(\tilde{\mathbf{x}}) = (r_{\tilde{U}}(\tilde{x}_1), r_{\tilde{U}}(\tilde{x}_2), \dots, r_{\tilde{U}}(\tilde{x}_n)) = (x_{12}, x_{22}, \dots, x_{n2}).$$
(5)

By [1], for $\tilde{x}, \tilde{y} \in \tilde{U}$, the order relation $\leq_{\tilde{U}}$ is given as $\tilde{x} \leq_{\tilde{U}} \tilde{y} \Leftrightarrow x_1 \leq y_1$ and $x_2 \geq y_2$, such that $\tilde{0} = (0, 1) \leq_{\tilde{U}} \tilde{x}$ and $\tilde{1} = (1, 0) \geq_{\tilde{U}} \tilde{x}$. Moreover, the expression is known:

$$\tilde{x} \preceq_{\tilde{U}} \tilde{y} \Leftrightarrow x_1 \le y_1 \text{ and } x_2 \le y_2.$$
 (6)

Additionally, a function $\pi_A : \chi \to U$, called an **intuitionistic fuzzy index** (IFIx) of an element $x \in \chi$, related to an IFS **A**, is given as

$$\pi_A(x) = N_S(\mu_A(x) + \nu_A(x)), \forall x \in \chi, \mu_A(x) + \nu_A(x) \le 1.$$
(7)

Such function provides the hesitancy (indeterminance) degree of x in A. Based on this, the accuracy function $h_A: \chi \to U$ provides the accuracy degree of x in A, given as:

$$h_A(x) + \pi_A(x) = 1 \tag{8}$$

Therefore, the largest $\pi_A(x)$ $(h_A(x))$, the higher the hesitancy (accuracy) degree of x in A.

An *intuitionistic fuzzy negation* (IFN shortly) $N_I : \tilde{U} \to \tilde{U}$ satisfies, for all $\tilde{x}, \tilde{y} \in \tilde{U}$, the following properties:

 $\mathbf{N}_I \mathbf{1}: N_I(\tilde{0}) = N_I(0, 1) = \tilde{1} \text{ and } N_I(\tilde{1}) = N_I(1, 0) = \tilde{0};$ $\mathbf{N}_I \mathbf{2}: \text{ If } \tilde{x} \ge \tilde{y} \text{ then } N_I(\tilde{x}) \le N_I(\tilde{y}).$

Additionally, N_I is a **strong intuitionistic fuzzy negation** (SIFN) verifying the condition:

 $\mathbf{N}_I \mathbf{3}: N_I(N_I(\tilde{x})) = \tilde{x}, \forall \tilde{x} \in \tilde{U}.$

Consider N_I as IFN in \tilde{U} and $\tilde{f}: \tilde{U}^n \to \tilde{U}$. For all $\tilde{\mathbf{x}} = (\tilde{x}_1, \ldots, \tilde{x}_n) \in \tilde{U}^n$, the N_I -dual intuitionistic function of \tilde{f} , denoted by $\tilde{f}_{N_I}: \tilde{U}^n \to \tilde{U}$, is given by:

$$\tilde{f}_{N_I}(\tilde{\mathbf{x}}) = N_I(\tilde{f}(N_I(\tilde{x}_1), \dots, N_I(\tilde{x}_n))).$$
(9)

When \tilde{N}_I is a SIFN, \tilde{f} is a self-dual intuitionistic function. Additionally, by [2], a SIFN $N_I : \tilde{U} \to \tilde{U}$ is a SIFN iff there exists a SFN $N : U \to U$ such that: $N_I(\tilde{x}) = (N(N_S(x_2)), N_S(N(x_1)))$. Additionally, if $N = N_S$, we have that $N_I(\tilde{x}) = (x_2, x_1)$.

2 Generalized Atanassov's Intuitionistic Fuzzy Index

Definition 2.1. [5, Definition 1], A function $\Pi : \tilde{U} \to U$ is called a generalized intuitionistic fuzzy index associated with a SFN N (A - GIFIx(N)) if, for all $x, y, z, t \in U$, it holds that:

Proposition 2.1. [5, Theorem 3] Let N_I be a SFN. A function $\Pi : \tilde{U} \to U$ is a A - GIFIx(N) iff there exists a function $I : U^2 \to U$ verifying **I1**, **I8**,**I9** and **I10** such that

$$\Pi_I(x,y) = N(I(1-y,x)).$$
(10)

See Table 2, illustrating Prop. 2.2 by presenting examples of A-GIFIx associated with following fuzzy implications: R_0 , Lukaziewicz, Reichenbach, Gaines-Rescher and I_{30} [9].

2.1 A-GIFIx and conjugate fuzzy implications

Proposition 2.2. Let N_I be a SFN, $\phi \in Aut(U)$ and $I^{\phi} : U^2 \to U$ be a ϕ -conjugate of $I : U^2 \to U$. A function $\Pi : \tilde{U} \to U$ given by

$$\Pi_{I^{\phi}}(x,y) = N^{\phi}(I^{\phi}(1-y,x)).$$
(11)

is a A - GIFIx(N) whenever $\Pi_I : \tilde{U} \to U$ is also a A - GIFIx(N).

Proof. (\Rightarrow) Suppose that $\Pi : \tilde{U} \to U$, $\Pi_I(x, y) = N(I(1 - y, x))$, is a A - GIFIx(N). Then, $I, I^{\phi} : U^2 \to U$ verify **I1**, **I8,I9** and **I10**. For $\Pi_{I^{\phi}}(x, y) = N^{\phi}(I^{\phi}(1 - y, x))$ the

Fuzzy Implications	A - GIFIx
$I_0(x,y) = \begin{cases} 1, & \text{if } x \le y, \\ \max(1-x,y), & \text{otherwise;} \end{cases}$	$\Pi_0(x,y) = \begin{cases} 0, & \text{if } x + y = 1, \\ 1 - \max(x,y), & \text{otherwise;} \end{cases}$
$I_{LK}(x,y) = \begin{cases} 1, & \text{if } x \le y, \\ 1-x+y, & \text{otherwise;} \end{cases}$	$\Pi_{LK}(x,y) = \begin{cases} 0, & \text{if } x+y=1, \\ 1-x-y, & \text{otherwise;} \end{cases}$
$I_{RB}(x,y) = \begin{cases} 1, & \text{if } x \le y, \\ 1 - x + xy, & \text{otherwise;} \end{cases}$	$\Pi_{RB}(x,y) = \begin{cases} 0, & \text{if } x+y=1, \\ 1-x-y+xy, & \text{otherwise;} \end{cases}$
$I_{GR}(x,y) = \begin{cases} 1, & \text{if } x \le y, \\ 0, & \text{otherwise;} \end{cases}$	$\Pi_{GR}(x,y) = \begin{cases} 0, & \text{if } x + y = 1, \\ 1, & \text{otherwise;} \end{cases}$
$I_{30}(x,y) = \begin{cases} \min(1-x,y,0.5), & \text{if } 0 < x < y < 1, \\ \min(1-x,y), & \text{otherwise;} \end{cases}$	$\Pi_{30}(x,y) = \begin{cases} 1-\min(x,y,0.5), & \text{if } 0 < x, y < 1\\ & \text{and } x+y=1,\\ 1-\min(x,y), & \text{otherwise;} \end{cases}$

Table 1: Generalized intuitionistic fuzzy index associated with the standard negation.

following holds:

$$\begin{split} \mathbf{\Pi}\mathbf{1} : N^{\phi}(I^{\phi}(1-y,x)) &= 1 &\Leftrightarrow I^{\phi}(1-y,x) = 0, \ by \ \mathbf{N3} \\ &\Leftrightarrow \phi^{-1}(I(\phi(1-y),\phi(x))) = 0, \ by \ \mathbf{Eq}.(1) \\ &\Leftrightarrow I(\phi(1-y),\phi(x))) = 0, \ by \ \mathbf{A2}, \ \mathbf{A3} \\ &\Leftrightarrow \phi(1-y) = 1 \ and \ \phi(x) = 0, \ by \ \mathbf{I10} \\ &\Leftrightarrow 1-y = 1 \ and \ x = 0 \Leftrightarrow y = 0 \ and \ x = 0, \ by \ \mathbf{A2} \end{aligned} \\ \mathbf{\Pi}\mathbf{2} : N^{\phi}(I^{\phi}(1-y,x)) = 0 &\Leftrightarrow I^{\phi}(1-y,x) = 1, \ by \ \mathbf{N3} \\ &\Leftrightarrow \phi^{-1}(I(\phi(1-y),\phi(x))) = 1, \ by \ \mathbf{Eq}.(1) \\ &\Leftrightarrow I(\phi(1-y),\phi(x))) = 1, \ by \ \mathbf{A2}, \ \mathbf{A3} \\ &\Leftrightarrow \phi(1-y) = 1 \le \phi(x) = 0, \ by \ \mathbf{I9} \\ &\Leftrightarrow 1-y \le x \Leftrightarrow x+y = 1, \ by \ \mathbf{A1} \end{aligned} \\ \mathbf{\Pi3} : (z,t) \preceq (x,y) \Rightarrow z \le x \ and t \le y, \ by \ \mathbf{Eq}.(6) \\ &\Rightarrow z \le x \ and \ N_S(t) \le N_S(y), \ by \ \mathbf{N2} \\ &\Rightarrow \phi(z) \le \phi(x) \ and \phi(1-t) \ge \phi(1-y), \ by \ \mathbf{A1} \\ &\Rightarrow I^{\phi}(1-y,x) \ge I^{\phi}(1-t,z), \ by \ \mathbf{I1} \\ &\Rightarrow N(I^{\phi}(1-y,x)) \le N^{\phi}(I^{\phi}(1-t,z)), \ by \ \mathbf{N2} \\ &\Rightarrow \Pi_{I^{\phi}}(x,y) \le \Pi_{I^{\phi}}(z,t), \ by \ \mathbf{Eq}.(11) \end{aligned} \\ \mathbf{\Pi4} : \ When \ N_I \ is \ a \ SIFN, \ \Pi(N_I(x,y)) = \Pi_{I^{\phi}}(N(N_S(y)), N_S(N(x))), \ by \ \mathbf{Eq}.(2) \\ &= N^{\phi}(I^{\phi}(N^2(N_S(y)), N^2(x)), \ by \ \mathbf{N3} \\ &= N^{\phi}I^{\phi}(I^{\phi}(N_S(y), x) = \Pi(x,y), \ by \ \mathbf{N3} \end{aligned}$$

Therefore, Proposition 2.2 holds.

6

Fuzzy Implications	A - GIFIx
$I_0^{\phi}(x,y) = \begin{cases} 1, & \text{if } x \leq y, \\ \sqrt{\max((1-x)^2, y^2)}, & \text{otherwise;} \end{cases}$	$\Pi_{I_0^{\phi}}(x,y) = \begin{cases} 0, \text{ if } x + y = 1, \\ 1 - \sqrt{\max(y^2, x^2)}, \text{ otherwise;} \end{cases}$
$I_{LK}^{\phi}(x,y) = \begin{cases} 1, \text{ if } x \leq y, \\ \sqrt{1 - x^2 + y^2}, \text{ otherwise;} \end{cases}$	$\Pi_{I_{LK}^{\phi}}(x,y) = \begin{cases} 0, \text{ if } x + y = 1, \\ 1 - \sqrt{2y - y^2 + x^2}, \text{ otherwise;} \end{cases}$
$I_{RB}^{\phi}(x,y) = \begin{cases} 1, & \text{if } x \leq y, \\ \sqrt{1 - x^2 + x^2 y^2}, & \text{otherwise;} \end{cases}$	$\Pi_{I^{\phi}_{RB}}(x,y) = \begin{cases} 0, \text{ if } x+y=1, \\ 1-\sqrt{x^2+(1-x^2)(2y-y^2)}, \text{ otherwise;} \end{cases}$
$I_{GR}^{\phi}(x,y) = \begin{cases} 1, \text{ if } x \leq y, \\ 0, \text{ otherwise;} \end{cases}$	$\Pi_{I^{\phi}_{GR}}(x,y) = \begin{cases} 0, \text{ if } x+y=1, \\ 1, \text{ otherwise;} \end{cases}$
$I_{30}^{\phi}(x,y) = \begin{cases} \sqrt{\min(1-x^2, y^2, 0.5)}, \\ \text{if } 0 < x < y < 1, \\ \sqrt{\min((1-x)^2, y^2)}, \text{otherwise;} \end{cases}$	$\Pi_{I_{30}^{\phi}}(x,y) = \begin{cases} 1 - \sqrt{\min(1 - (1 - y)^2, x^2, 0.5)}, \\ \text{if } 0 < x, y < 1 \text{ and } x + y = 1, \\ 1 - \sqrt{\min(1 - (1 - y)^2, x^2)}, \text{otherwise}; \end{cases}$

Table 2: A-GIFIx associated with the automorphisms $\phi(x) = x^2$ and $\phi^{-1} = \sqrt{x}$.

See Table 2.1, presenting the corresponding A - GIFIx(N) associated with the conjugate fuzzy implications related to Table 2:

2.2 A-GIFIx S-implications

By [2], a continuous fuzzy implication I satisfies properties **I7** and **I8** iff it is conjugate with the Lukasiewicz implication (I_{BH}^{ϕ}) and the following proposition holds:

Proposition 2.3. [5, Proposition 2] Let ϕ_1, ϕ_2 be automorphisms on U. Then

$$\Pi_{I_{RH}^{\phi}}(x) = \phi_1^{-1}(\phi_2(1-x_2) - \phi_2(x_1)), \forall x \in U,$$
(12)

is a A-GIFIx associated with the SFN associated with a SFN $N(x) = \phi_2^{-1}(1 - \phi_2(x))$.

Proposition 2.4. Let N_I be a SFN. A function $\Pi : \tilde{U} \to U$ is a A - GIFIx(N) iff there exists an (S,N)-implication $I_{S,N} : U^2 \to U$ such that

$$\Pi_I(x, y) = N(S(N(1-y), x)).$$
(13)

Proof. $\Pi_I(x,y) = N(I_{S,N}(1-y,x)) = N(S(N(1-y),x)), \text{ for all } (x,y) \in \tilde{U}.$

Remark 2.1. When $N = N_S$, Eq.(13) can be expressed as $\Pi_I(x, y) = N_S(S(x, y))$.

3 Conclusion

In this work, the concept of generalized Atanassov's intuitionistic fuzzy index was studied from different construction methods, in particular, by means of fuzzy S-implication operators and automorphisms. Further work considers the extension of such study related to properties verified by the A-GIFIX to the interval-valued intuitionistic fuzzy approach.

4 Acknowledgment

This work is partially supported by the Brazilian funding agencies under the processes 309533/2013-9 (CNPq), 309533/2013-9 (FAPERGS) e 448766/2014-0 (MCTI/CNPQ).

References

- K. Atanassov and G. Gargov Elements of Intuitionistic Fuzzy Logic. Part I, Fuzzy Sets and Systems, vol.95, 39–52, (1998).
- [2] M. Baczynski, Residual implications revisited. Notes on the Smets-Magrez, Fuzzy Sets and Systems vol.145, 267–277, (2004).
- [3] M. Baczynski, B. Jayaran, On the characterization of (S,N)-implications, Fuzzy Sets and Systems vol.158, 1713–1727, (2007).
- [4] E. Barrenechea, H. Bustince H., M. Pagola M., J. Fernández, J. Sanz: Generalized Atanassov's Intuitionistic Fuzzy Index. Construction Method. IFSA/EUSFLAT Conf., 478–482, (2009).
- [5] H. Bustince; E. Barrenechea; M. Pagola; J. Fernández; C. Guerra; P. Couto; P. Melo-Pinto, Generalized Atanassov's Intuitionistic Fuzzy Index: Construction of Atanassov's Fuzzy Entropy from Fuzzy Implication Operators, *International Journal* of Uncertainty, Fuzziness, and Knowledge-Based Systems, Vol.19, 51–69, (2011).
- [6] H. Bustince, P. Burillo, F. Soria, Automorphism, negations and implication operators, Fuzzy Sets and Systems, vol.134, 209–229, (2003).
- [7] J. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Dordrecht: Kluwer Academic Publishers, (1994).
- [8] E. Klement, M. Navara, A survey on different triangular norm-based fuzzy logics, Fuzzy Sets and Systems, vol. 101, 241–251, (1999).
- [9] L. Lin and Z.Q. Xia, Intuitionistic fuzzy implication operators: Expressions and properties, Journal of Applied Mathematics and Computing, vol. 22, 325–338, (2006).
- [10] E. Trillas, L. Valverde, On implication and indistinguishability in the setting of fuzzy logic, in: J. Kacprzyk, R. R. Yager (eds.), Management Decision Support Systems using Fuzzy Sets and Possibility Theory, Verlag TUV Rheinland, Cologne, 198–212, (1985).

7