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Abstract. This paper describes an implementation of the Unordered Parallel Reverse
Cuthill-McKee algorithm which is compared with its well-known serial version. The OpenMP
framework is used for supporting the parallelism and a strategy for reducing lazy threads
is evaluated. Large sparse matrices are used to test sequential and parallel approaches.
The computational cost reduction and the quality of matrices bandwidth minimization are
validated by CPU time and speedup.
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1 Introduction

Heuristics for bandwidth reduction of matrices are used to reduce computational and
storage costs of the large sparse linear systems resolution. The bandwidth of a matrix
is related to the concentration of nonzero elements around the main diagonal. For a
symmetric matrix A = {aij} of size n, the bandwidth reduction problem consists of finding
a permutation of rows and columns of A so as to bring all the non-zero elements of A
to reside in a band that is as close as possible to the main diagonal, that is to b =
min{max{|i− j| : aij 6= 0, i = [1..n], j = [1..n]}}. Unfortunately, determining the optimal
ordering is a NP-complete problem [12], so heuristic algorithms are typically used instead.

Most methods designed to reduce the matrix bandwidth are based on the corresponding
graph formulation: find a labeling of the vertices of a graph such that most connections
are between vertices having close labels. An important and well-known example of a
bandwidth reduction algorithm is that proposed by Cuthill and McKee [2] and its many
variants. The Cuthill-McKee algorithm uses Breadth-First-Search to constructs a level set
structure of the graph and labels the nodes according to these levels. Other algorithms
very frequently referenced in the literature for bandwidth minimization are Sloan [13] and
Nested Dissection [4]. All of them also use graph search strategies and provide high quality
solutions. Another main class of reordering algorithms is based on the minimum degree
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algorithm, which uses computationally cheap bounds on the minimum degree in place of
the exact minimum degree.

In classical implementations of these algorithms, matrix reordering is performed se-
quentially. However, the widespread use of multi-core processors has conducted great
performance improvements related to matrix computation. In this context, several paral-
lel strategies has been proposed for solving the bandwidth reduction problem. The use of
Genetic Algorithms [10] and multilevel graph partitioning methods [8] are some examples.

In this paper, an implementation of the parallel RCM algorithm proposed by [7] is
presented. The OpenMP framework is used for support the parallelism and a strategy
to reducing lazy threads was included in the implemented algorithm. So, this paper is
organized as follow. In the next section, the unordered RCM algorithm is described in
details. The Section 3 is dedicated to present experimental results on a set of test matrices.
Conclusions and future works are presented in the last section.

2 Unordered Parallel Reverse Cuthill-McKee

The Cuthill-McKee algorithm has as input a matrix A and uses a refinement of
Breadth-First-Search (BFS) to produce a permutation of the rows and columns of A. It
divides the matrix associated graph into level sets and a level structure rooted at a node
r is defined as the partitioning of V into levels l1(r), l2(r), . . . , lh(r) such that l1(r) = {r}
and for i > 1, li(r) is the set of all nodes that are adjacent to nodes in li−1(r) but are not
in l1(r), l2(r), . . . , li−1(r). Cuthill-McKee orders within each level set li(r) by sorting first
neighbors of the first node in li−1(r), then those that are neighbors of the second node
in li−1(r), and so on. The Reverse Cuthill-McKee (RCM) algorithm uses as heuristic the
opposite ordering relation so nodes are visited in descending degree order. Such reversion
has been proved with experimental results that RCM produces permutations of better or
equal quality to the original Cuthill-McKee. The root r of the level structure is usually
chosen from among the pseudo-peripheral 3 nodes of the associated graph.

The Unordered Parallel RCM proposed by [7] uses a different BFS algorithm as starting
point. Other three general steps complete the algorithm and they are as follow.

Step 1: Compute the levels for each node using the unordered BFS algo-
rithm. The BFS modified algorithm is obtained by noticing that the level of a node is
a local minimum in the graph, i.e., the level of a node (except the root) is one higher
than the minimum level of this neighbors [5]. In the other words, the computation of
level for node n can be described as: level(root) = 0; level(k) = ∞,∀k other than root;
and level(n) = min(level(m) + 1), ∀m ∈ neighbors of n. Because of this property, the
algorithm maintains a workset (ws) of nodes from which any arbitrary element can be
selected. In this case, multiple nodes can be processed in parallel and data structure used
as workset must be an unordered set. Initially, the level of the root is set to zero, the
level of all other nodes is set to ∞, and only the root node is in the workset. For each

3A pseudo-peripheral node is one of the pairs of vertices that have approximately the greatest distance
from each other in the graph (the graph distance between two nodes is the number of edges on the shortest
path between nodes).
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iteration of the algorithm over the workset, a thread removes an arbitrary node n from
ws and calculates the appropriated level to neighbors of n. Thus the calculated level is
set for each neighbor with higher level. The updated neighbors are added in ws and the
algorithm iterates until ws is empty.

Step 2: Count the number of nodes at each level. Each position of the generated
array is related to a level. Hence, each value stored in the respective position of the array
corresponds to the number of nodes at a specific level. In the implemented algorithm, the
array obtained from Step 1 is divided among threads. Each one counts how many nodes
there are at each level locally. Thus, the local array from each thread is aggregated in a
global count array.

Step 3: Compute the prefix sum4 of levels. The prefix sum gives the initial
offset in the final permutation array for nodes in any given level. The algorithm used for
calculating prefix sum is based on the algorithm proposed by [1]. Initially, each processor
computes the prefix sums of the n

p elements it has locally (n is the number of elements,
and p is the number of processors). Next the local prefix sum values are exchanged among
the processors and each one accumulates the respective received value. For this exchange
the processors are divided in dinamically sized groups. Finally, each processor combines
the result from the accumulated prefix sums with each local prefix sum initially computed.

Step 4: Place nodes in the permutation array. This placement phase is paral-
lelized by pipelining. A single thread is assigned to each level, and threads communicate
to the next level through a single-producer, single-consumer queue. In this way, a thread
at level l writes out children in a RCM order for a thread at level l + 1 to consume. A
thread receives nodes in the correct order for its level and produces nodes in the correct
order for the next level. Parallelization is achieved because each level can be populated as
soon as nodes are produced by the previous level.

In the related work [5], some optimizations were proposed for other unordered algo-
rithms. These same optimizations were evaluated and applied in the implemented parallel
RCM. Firstly, to reduce the overhead of accessing the workset, each thread removes a
chunk of active elements from workset instead of just one element. Newly created work
is cached locally, and after the entire chunk is processed, this work is added to the global
workset. The chunk size is determined dynamically by the program. Each thread gets
a number of elements corresponding to fifty percent of the current global workset size.
Although other percentages were tested, the best performance was reached using this em-
pirically defined value. Another implemented optimization is the reduction of amount of
wasted work by each thread. As the workset is accessed by multiple threads without a
strict order, it can be eventually empty. In this case, can there be lazy threads. Thus, the
used strategy was to maintain an order in which all threads remove active elements from
one end and add to the other.

4Prefix sum: The prefix sum operation takes a binary associative operator ⊕, and an ordered set of
n elements [a0, a1, . . . , an−1] and returns the ordered set [a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ . . .⊕ an−1)].
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3 Experimental Results

The evaluation of the Unordered RCM performance was against a traditional serial
implementation of RCM [11]. A set of six symmetric matrices was selected from the
University of Florida Sparse Matrix Collection [3]. The program was coded in the C
language and the parallelism was supported by OpenMP framework. The experiments
were performed on a PC with Intel i7-3610QM 8 core processor with 2.3 GHz of CPU
and 8 GB of main memory. The operational system was Ubuntu 14.04.3 LTS 64-bit with
Linux Kernel 3.19.0-31. The code was compiled with GNU gcc version 4.8.4.

Table 1: Results Comparison

Input Band Reduction Time (sec./#threads)
Matrix Dimension Sparsity (%) (%) Serial Parallel

Dubcova3 146,689 99.983 98.442 1.199 0.230 (32)

inline 1 503,712 99.985 98.807 9.040 1.965 (64)

audikw 1 943,695 99.991 96.283 84.833 8.244 (128)

dielFilterV3real 1,102,824 99.993 97.548 88.298 13.308 (128)

atmosmodj 1,270,432 99.999 64.513 32.732 1.895 (128)

G3 circuit 1,585,478 99.999 99.464 84.832 18.007 (128)

Table 1 shows a performance comparison between serial and parallel RCM. The three
first columns present selected matrices and some characteristics of them (dimension and
percentage of sparsity). The Band Reduction column shows the percentage of the band-
width reduction for each matrix for both algorithms, once serial and parallel implemen-
tations got the same reordering for all tested matrices. Naturally, each achieved best
execution time is related to appropriated choice of the number of threads (number into
parentheses at Parallel Time column). Moreover, two features are relevant to point out:
(1) The time spent in each pseudo-peripheral computation was excluded from the parallel
as well as the sequential program; (2) The BFS (Step 1) and the Placement (Step 4) are
the most expensive steps of the algorithm, corresponding in general to around 50% and
40% of total algorithm cost, respectively.

As aforementioned and depicted by Table 1, the reordering results obtained by running
the two algorithms for each matrix were the same. This quality might be graphically
attested through Figs. 1 and 2. Matrices were divided in groups according to the size
of them (smaller and larger than one million). The first row of each group presents the
matrix sparsity before reordering. In the below rows, each respective matrix is exhibited
as result of a permutation of rows and columns derived from Unordered RCM algorithm.

For each matrix running with a number of threads between 4 and 128 (in steps of 2), the
program was ran five times. The minimum and maximum reported values was excluded
and the average time was calculated from remaining values. Based on this methodology,
the Figure 3 presents how speedups scale as the number of processors increases. Using the
size of 1 million as baseline, the matrices were grouped according to the dimension one
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(a) Dubcova3 (b) inline 1 (c) audikw 1

Figure 1: Matrices of size smaller than one million

(a) dielFilterV3real (b) atmosmodj (c) G3 circuit

Figure 2: Matrices of size larger than one million
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more time: three smaller than 1 million and three larger than 1 million. As shown by the
Figure 3, audikw 1 and atmosmodj are matrices with best speedups for Unordered RCM.
Another feature is related to speedup upper bound reached by the matrices of dimension
around five hundred thousand. This is the case of Dubcova3 and inline 1 matrices, which
speedup increases until 32 and 64 threads respectively. For the remaining largest matrices
speedup scales until 128 threads. On the other hand, the algorithm did not get relevant
performance improvements when testing small matrices. Actually, for matrices of size
smaller than Dubcova3 matrix dimension (around 146 thousand rows), there is a speedup
reduction and an increasing of the reordering time.

(a) Smallest Matrices (b) Largest Matrices

Figure 3: Matrices Speedup

4 Conclusions

This paper analysed a parallel strategy for a traditional reordering algorithm. The
obtained results show the benefits related to improving reordering time. In fact, for the
set of tested matrices, the attained time reduction various between 78.26% and 94.21%.
Other significant results show the unordered RCM algorithm achieving speedups between
2.04X to 17.21X on 8 cores and 128 threads respectively. About the quality of solutions, the
reached bandwidth reduction was the same for sequential and parallel implementations.
Therefore, the studied algorithm might be considered as a good option for computation
of bandwidth reduction problem applied on large sparse matrices.

The presented algorithm was not compared against the state-of-the-art sequential im-
plementation of RCM, i.e., the HSL software library [6]. Thus, a more accurate perfor-
mance comparison might be achieved by confrontating both algorithms. Moreover, other
data structures and BFS strategies have been proposed for the parallelism of RCM. In fact,
Hassam et al [5] presents relevant results from a wavefront BFS implementation. And [9]
proposes a novel implementation of a workset data structure, called a ”bag”, in place of
FIFO queue usually employed in BFS algorithms. The use of these new structures and
strategies might promotes more improvements to the studied algorithm.
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