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Abstract. In this work we present efficient numerical solvers for large linear systems origi-
nated from a second-order finite difference discretization of three-dimensional acoustic wave
problems in the frequency domain. We consider Geometric Multigrid strategies combined
with the well known Conjugate Gradient and Red-Black SOR algorithms. Our method is
designed for parallel execution on shared-memory platforms using the OpenMP paradigm.
The experiments show that the parallel Conjugate Gradient method applying Multigrid as
a preconditioner offers the best results in terms of CPU time and number of iterations.
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1 Introduction

Multigrid solvers have a long history in exploration seismology. Gray and Epton [1]
introduced multigrid migration to image both mild and steeply dipping events but with a
computational cost similar to that of small migration aperture. Although, strictly speak-
ing, this was not a standard multigrid algorithm but such approach suits the seismic data
well. This is because based on the Nyquist criterion a smaller emergence angle allows a
larger trace spacing, while a larger emergence angle requires smaller trace spacing. The
authors used this property to optimize the migration in a multigrid fashion.

Moving on to inversion applications, Saleck et al. [2] combined multigrid and gradient
methods to solve 2D acoustic wave equation. In such cases, solving a nonlinear optimiza-
tion problem requires a discretization of the problem followed by numerical integration.
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Forward modelling is a central ingredient of Full Waveform Inversion (FWI), which is
a popular and technically accurate method for obtaining a better velocity model. At the
same time, a fundamental part of iterative methods for forward modelling is the precon-
ditioner in which a common practice is to use multigrid solvers. The ideas introduced in
this paper have the potential to be implemented as part of FWI, though understanding
the time efficiency of our algorithms in such contexts requires more in-depth analysis and
comparison with the state-of-the-art methods.

In this work, we analyze the computational impact of parallelizing the solving of large
systems of linear equations stemming from second-order finite difference discretization of
the three-dimensional acoustic wave equation in the frequency domain. We apply Multi-
grid strategies combined with the Conjugate Gradient and Red-Black SOR solvers, con-
sidering a shared-memory execution under OpenMP.

The paper is organized as follows. Section 2 describes the acoustic wave equation and
the resulting linear system. In section 3, we introduce the Geometric Multigrid, outline
some of its features, discuss the use of Multigrid as a preconditioner for the Conjugate
Gradient algorithm and explain our implementation details. The results from numerical
experiments are shown in section 4 and, finally, in section 5, we draw our main conclusions.

2 Problem description

The three-dimensional acoustic wave equation is defined in the frequency domain as

∇2ψ(r) + k2ψ(r) = f(r) in Ω ⊂ R3 , (1)

which is called the Helmholtz equation and where ψ(r) is the wavefield at r = (x, y, z),
f(r) is a source term, k = ω/c is the wave number, ω is the angular frequency and c
is the media velocity. Proper boundary conditions should be specified [3]. Considering
a second-order finite difference formulation, Ω is discretized into an uniform grid with
N = n3 unknown points, as shown in Fig. 1. The discretization yields a linear system
Au = f with a block-tridiagonal coefficient matrix A, which has heptadiagonal structure
as (−1,−1,−1, di,−1,−1,−1), where di is a diagonal value.

Figure 1: Cubic domain, where each x-y plane (in red) is called a z-layer.
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3 Multigrid strategies

The Multigrid method originated from an attempt to correct the limitations of tradi-
tional relaxation schemes, such as Jacobi and Gauss-Seidel [4]. These methods possess the
smoothing property, i.e., they efficiently reduce (oscilatory) high-frequency components of
the solution error, but have little effect on the low-frequency ones. Multigrid improves on
those methods by trying to eliminate low-frequency error through the coarse-grid correc-
tion strategy. Given an approximate solution v to equation Au = f , the idea is to move
(down) to a coarser grid and relax on the error e = u − v by using the residual equation
Ae = r = f −Av, and then move back (up) to the fine grid transferring the solution.

The algorithm works by performing a sequence of so called V-cycles, until convergence
is reached. They combine smoothing and coarse-grid correction to approximate a solution
v0 for the system A0u0 = f0, as shown in the pseudocode below.

procedure V-Cycle (v0, f0, A0, A1, ..., AL)
for l = 0 to L− 1 do

Relax ν1 times on Alul = f l with initial guess vl

Compute f l+1, which is the residual f l −Alvl restricted [l→ l + 1] to coarser grid
vl+1 ← 0

end for
Relax ν1 + ν2 times on ALuL = fL with initial guess vL

for l = L− 1 downto 0 do
Compute err, which is vl+1 prolonged [l + 1→ l] to finer grid
Correct vl ← vl + err
Relax ν2 times on Alul = f l with initial guess vl

end for
end procedure

In Geometric Multigrid, the matrices A0, A1, ..., AL are defined by discretizing the
original problem at different levels of resolution: 0 is the original and finest level, with L
being the coarsest. Regarding the coarse-grid levels, a coarse grid always has twice the
grid spacing of the next finer grid. For intergrid transfers, we use linear interpolation –
or prolongation – to move data from coarse to fine grids, and restriction (moving vectors
from a fine grid to a coarse grid) is done by averaging values at neighboring fine grid
points. Finally, some decisions must be made when using Multigrid: one must choose the
relaxation method for the smoothing task, and also determine the number of coarse-grid
levels L and the number of relaxations ν1 and ν2 to be performed. These three parameters
are generally very small numbers.

The relaxation scheme chosen here is the Red-Black Successive Over-Relaxation (RB-
SOR), a variation of the standard SOR where the grid points of the domain are divided into
red and black points: a red point is always surrounded by black points and vice-versa. At
each relaxation step, first the red points are updated (in any order, as they are dependent
only on black points), then the black ones. Points of the same color are independent from
each other and can be updated simultaneously [5], within multiple parallel threads.
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We also can exploit the symmetry and positive definiteness of A, by using a precondi-
tioned Conjugate Gradient method to solve the system Au = f . A preconditioner matrix
M is needed, which should be a good approximation to A, easy to compute and must
also be symmetric positive definite. There are several known techniques to obtain the
preconditioning p = M−1v, and in the present work we adopt a V-cycle of Multigrid as
the preconditioner, following the ideas found in [6]. More specifically, we perform one
V-cycle for the problem Ap = v, with zero initial guess and zero boundary conditions.

In the algorithms implemented for this work, no matrices are stored in memory. Every
matrix operation, be it matrix-vector multiplication or RB-SOR relaxation, is optimized
to exploit the known stencil structure of coefficient matrix A. To improve performance
even further, we parallelized the main components of those algorithms. For Multigrid, the
RB-SOR relaxations and both the restriction and prolongation operations – i.e., the com-
putation of the restricted residual and the prolonged solution error – are performed using
parallel threads. In the Conjugate Gradient method, the matrix-vector multiplication is
parallelized and naturally so is the preconditioning using the Multigrid V-cycle. Those
four operations rely on for loops, which are the target of our efforts.

In the following section, we analyze the behavior of the three different methods applied
to solve the linear systems derived from the acoustic wave equation: the Conjugate Gra-
dient (CG), a Multigrid solver using Red-Black SOR as smoother (MG-RBSOR) and a
Multigrid preconditioned Conjugate Gradient (MGpCG), which also employs the RB-SOR
in preconditioning.

4 Numerical results

We consider both the heterogeneous and homogeneous versions of the acoustic wave
problem stated in section 2, subject to zero boundary conditions, to run our tests. For
the heterogeneous case, the diagonal component di in coefficient matrix A has a different
value for each z-layer in the domain Ω, while in the homogeneous case di is a constant.
The right-hand side vector f is a point source δ-function. Our code was written in C and
compiled using gcc version 4.8.2 with -O3 optimization level. The numerical experiments
were run under Ubuntu 14.04 LTS on a 64-bit machine with 64GB RAM and a four-cored
Intel Xeon CPU E5-46030 @ 2.00GHz processor.

In all tests, iterations are halted when the residual drops below 10−8. For the MG-
RBSOR solver, the following parameters were set: L = 3; ω = 1.6 (for the RB-SOR);
ν1 = ν2 = 2. With respect to the V-cycle performed inside the MGpCG, these parameters
apply: L = 3; ω = 1.6; ν1 = ν2 = 4, and instead of relaxing ν1 + ν2 times at the coarsest
level, CG iterations are applied to solve the equation system, stopping when the residual
drops below 10−3. In the shared-memory parallel execution using OpenMP, four parallel
threads are employed. Our results follow next.

Figures 2 and 3 display the results from solving – in sequential and in parallel mode,
respectively – the heterogeneous problem by MG-RBSOR, CG and MGpCG. In the graphs,
the colored bars give the runtime and inside the circles are the number of iterations for
each method. We can observe that, for all methods, the iterations count remains fixed or
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Figure 2: CPU time, in seconds, and iterations count for different sizes (n) of the hetero-
geneous problem run in sequential mode.
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Figure 3: CPU time, in seconds, and iterations count for different sizes (n) of the hetero-
geneous problem run in parallel mode (4 threads).
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around a constant value as n, the grid dimension, increases – with the MGpCG attaining
the best solution times. Furthermore, by running the MGpCG program in parallel with
OpenMP, we achieve a time reduction above 40% for all cases tested.
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Figure 4: CPU time, in seconds, and iterations count for different sizes (n) of the homo-
geneous problem run in sequential mode.
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Figure 5: CPU time, in seconds, and iterations count for different sizes (n) of the homo-
geneous problem run in parallel mode (4 threads).

The homogeneous problem is solved using the CG and MGpCG. The results obtained
are shown in Figs. 4 and 5, that provide the time for computing the solution in sequential
and in parallel mode, respectively, along with the corresponding number of iterations.
Analyzing the graphs, the iterations count for the CG algorithm rises steeply with the
problem size, while it is constant in the MGpCG. The preconditioning clearly improves
solution times (for n = 1001, the parallel MGpCG is 85% faster than parallel CG), and
the OpenMP parallelized MGpCG program reduced the runtime by 39% on average.
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5 Conclusions

In this work we presented efficient numerical Multigrid strategies to solve large systems
of linear equations arising from a second-order finite difference discretization of three-
dimensional acoustic wave problems in the frequency domain. We consider the Multigrid
scheme combined with the Conjugate Gradient and Red-Black SOR solvers. Our exper-
iments show that the parallel matrix-free Multigrid preconditioned Conjugate Gradient
method accelerates convergence and can reduce the runtime by around 40% for the hetero-
geneous and homogeneous acoustic wave applications. With this optimized approach we
are able to solve large linear systems (O(109) unknowns) in standard workstations in less
than one hour (worst case). The present algorithms will be extended to more complicated
cases, involving different sources and boundary conditions found in more practical seismic
modeling problems.
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