Trabalho apresentado no CNMAC, Gramado - RS, 2016.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Espectros de frequências do modelo não local de Timoshenko

Daniela de R. Tolfo¹ PPGMap, UFRGS, Porto Alegre, RS - Unipampa, Campus Caçapava do Sul, RS Julio C. R. Claeyssen² Instituto de Matemática, UFRGS, Porto Alegre, RS

1 Introdução

O estudo de estruturas com dimensões muito pequenas tem motivado modificações na teoria da mecânica do contínuo. Em [2] as Equações (1)-(2) descrevem o modelo de Timoshenko não local para a deflexão transversal, u = u(t, x), e rotação da seção transversal, $\psi = \psi(t, x)$, de uma viga uniforme

$$\rho A(u_{tt} - (e_0 a_0)^2 u_{xxtt}) - \kappa G A(u_{xx} - \psi_x) = 0, \tag{1}$$

$$\rho I(\psi_{tt} - (e_0 a_0)^2 \psi_{xxtt}) - E I \psi_{xx} - \kappa G A(u_x - \psi) = 0, \tag{2}$$

sendo $e_0 a_0$ o parâmetro não local e ρ , A, I, E, $G \in \kappa$ parâmetros físicos e do modelo.

2 Espectros de frequências da viga bi-apoiada

Soluções de (1)-(2) da forma $u(t, x) = e^{i\omega t}U(x) e \psi(t, x) = e^{i\omega t}\Psi(x)$ fornecem a equação diferencial matricial de segunda ordem, cujo polinômio característico dado pela Equação (3) é

$$b_0(\omega)\beta^4 + b_2(\omega)\beta^2 + b_4(\omega) = 0.$$
 (3)

Assim como na teoria clássica de Timoshenko $(e_0a_0 = 0)$, para uma viga bi-apoiada [1], surgem no modelo não local dois espectros de frequências $\omega_{N1}(n) \in \omega_{N2}(n)$, $n \in \mathbb{Z}$, chamados primeiro e segundo espectros respectivamente, sendo $\omega_{N1}(n) < \omega_{N2}(n)$. Na Figura 1 são graficadas $\omega_{N1}(n) \in \omega_{N2}(n)$ juntamente com as frequências singulares $\omega_{b01} = \frac{1}{e_0a_0}\sqrt{\frac{\kappa G}{\rho}}$, $\omega_{b02} = \frac{1}{e_0a_0}\sqrt{\frac{E}{\rho}}$, raízes de $b_0(\omega)$, e a frequência crítica $\omega_c = \sqrt{\frac{\kappa GA}{\rho I}}$ para a viga circular com parâmetros fornecidos em [3], $L = 120 \times 10^{-9}$ m, e valores particulares de e_0a_0 . Observa-se na Figura 1(b) que ambos os espectros tornam-se limitados para $e_0a_0 \neq 0$, o que não ocorre para a teoria clássica de Timoshenko ($e_0a_0 = 0$) representada na Figura 1(a). Para $n \to \infty$ tem-se $\omega_{N_1} \to \omega_{b01} \in \omega_{N_2} \to \omega_{b02}$, no entanto, observa-se na Figura 1(b) e 1(c) que para diferentes valores de e_0a_0 tem-se que ω_{N2} tende para ω_{b02} por valores menores ou maiores que ω_{b02} dependendo do parâmetro e_0a_0 .

¹danitolfo.cp@gmail.com

 $^{^2}$ julio@mat.ufrgs.br

Figura 1: $\omega_{N1}(n) \in \omega_{N2}(n)$ para viga não local bi-apoiada, frequências em 10¹² $\frac{\text{rad}}{\text{s}}$.

As relações de ω_{N1}^2 com ω_{b01}^2 e ω_{N2}^2 com ω_{b02}^2 para diferentes intervalos de $(e_0a_0)^2$ são representadas na Figura 2. No intervalo $\frac{EI}{\kappa GA} - \frac{I}{A} < (e_0a_0)^2 < \frac{EI}{\kappa GA}$ existe interseção entre ω_{b02}^2 e ω_{N2}^2 e a relação entre elas se altera.

Figura 2: Relação das frequências $\omega_{N1}^2 \operatorname{com} \omega_{b01}^2 = \omega_{N2}^2 \operatorname{com} \omega_{b02}^2$.

3 Conclusões

O modelo de Timoshenko não local, estudado neste trabalho, apresenta dois espectros de frequências para uma viga bi-apoiada, assim como a teoria clássica de Timoshenko. O parâmetro e_0a_0 do modelo não local influencia o comportamento das frequências de ambos os espectros e seu comportamento em relação às frequências singulares ω_{b01} e ω_{b02} .

Referências

- M. Levinson and D. W. Cooke. On the two frequency spectra of Timoshenko beams, Journal of Sound and Vibration, 84(3):319–326, 1982.
- [2] P. Lu, H. P. Lee, C. Lu and P. Q. Zhang. Application of nonlocal beam models for carbon nanotubes, *International Journal of Solids ans Structures*, 44:5289–5300, 2007. DOI: 10.1016/j.ijsolstr.2006.12.034
- J. N. Reddy and S. D. Pang. Nonlocal continuum theories of beams for the analysis of carbon nanotubes, *Journal of Applied Physics*, 103:023511-1–023511-16, 2008. DOI: 10.1063/1.2833431.