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Abstract. In this paper using the Clifford bundle (C`(M, g)) and spin-Clifford bundle
(C`Spine

1,3
(M, g)) formalism, which permit to give a meaningfull representative of a Dirac-

Hestenes spinor field (even section of C`Spine
1,3

(M, g)) in the Clifford bundle, we give a geo-
metrical motivated definition for the Lie derivative of spinor fields in a Lorentzian structure
(M, g) where M is a manifold such that dimM = 4, g is Lorentzian of signature (1, 3). Our

Lie derivative, called the spinor Lie derivative (and denoted
s

£ξ) is given by nice formulas

when applied to Clifford and spinor fields, and moreover
s

£ξg = 0 for any vector field ξ.
With this we compare our definitions and results in [11] with the many others appearing in
literature on the subject.
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1 Introduction

Lie derivatives of tensor fields are defined once we give the concept of the push forward
and pullback mappings (which serves the purpose of defining the image of the tensor field)
associated to one-parameter groups of diffeomorphisms generated by vector fields. These
concepts are well known and very important in the derivation of conserved currents in
physical theories.

It happens that physical theories need also the concept of spinor fields living on a
Lorentzian manifold and the question arises as how to define a meaningful image for these
objects under a diffeomorphism. There are a lot of different approaches to the subject, as
the reader can learn consulting, e.g., [1–4,6–10,12,15].
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We recall [14] that fixing a global spinor basis4 Ξ0(x) = (x, u0(x)) for PSpine1,3
(M, g),

and given an algebraic spinor Ψ ∈ sec C`lSpine1,3
(M, g), the associated Dirac-Hestenes Spinor

Field (DHSF) Ψ ∈ sec C`0lSpine1,3
(M, g) can be represented in the Clifford bundle by the

object
ψΞ0 ∈ sec C`0(M, g). (1)

Remark 1.1. When ψΞ0ψ̃Ξ0 6= 0 we can easily show that ψΞ0 has the following represen-
tation

ψΞ0 = ρ
1
2 e−

τgβ

2 R, (2)

where ρ, β ∈ sec
∧0T ∗M ↪→ sec C`0(M, g) and [13]

R = ±eF ∈ sec Spine1,3(M, g) ↪→ sec C`0(M, g), (3)

with F ∈ sec
∧2T ∗M ↪→ sec C`0(M, g).

Let ξ ∈ secTM be a smooth vector field. For any x ∈ M there exists an unique
integral curve of ξ, given by t 7→ h(t, x), with x = h(0, x). We recall that for (t, x) ∈
I(x)×M (I(x) ⊂ R) the mapping h: (t, x) 7→ h(t, x) is called the flow of ξ. We suppose
in what follows that the mappings ht := h(t, ) : M → M , x 7→ x′ = ht(x) generate a
one-parameter group of diffeomorphisms of M (i.e., I(x) = R).

Thus, we see that there exists no difficulty in defining the pullback of ρ
1
2 e−

τgβ

2 eF(x)

under ht (or of more generally, for any ψΞ0 ∈ C`0(M, g)), which will be written as

ρ
1
2 (x′(x))e−

τ ′gt(x)β(x
′(x))

2 eF
′
t(x). (4)

However, we immediately have a

Problem: The object defined by Eq.(4) is of course, a representative in
C`0(M, g) of some Dirac-Hestenes spinor field but there is no way to know
to which the spinor frame that object is associated.

Thus, we must find another way to define the Lie derivative for spinor fields. Our
way, as we will see, is based in a geometric motivated definition for the concept of image
of Clifford and spinor fields under diffeomorphisms generated by one-parameter group
associated to an arbitrary vector field ξ. But, we need first to introduce some results
proved in [11], starting with the

Proposition 1.1. Let £ξ denotes the standard Lie derivative of tensor fields. If ξ is a
Killing vector field then

£ξγ
α =

1

4
[L(ξ) + dξ,γα] (5)

= Dξγ
α +

1

4
[dξ,γα] (6)

4Such a basis must exists according to Geroch Theorem [5].
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L(ξ) :=
1

2
(cακι + cκαι + cιακ)ξκγα ∧ γι (7)

where cα···κι are the structure coefficients of the basis {eα} dual of {γα}.
Remark 1.2. Moreover, one can easily show using the previous results that when C ∈
sec C`(M, g) and ξ ∈ secTM is a Killing vector field then

£ξC = dξC+
1

4
[S(ξ), C]. (8)

Indeed, Eq.(8) follows trivially by induction and noting that £ξ(AB) = £ξ(A)B +
A£ξ(B), where A,B ∈ sec C`(M, g), when ξ ∈ secTM is a Killing vector field.

This suggests that L(ξ) should be involved in the definition of the Lie derivative of
spinor fields. Based on this, and recalling Eq.(3) we propose that the spinor lifting of
an integral curve of a generic smooth vector field ξ ∈ secTM to PSpine1,3(M, g) in the
parallelizabe manifold M equipped with the global orthonormal cobasis {γα} is given by
the following

Definition 1.1. Consider the integral curve ht : R → M of an arbitrary smooth vector
field ξ. The spinor lifiting h̆t of ht to PSpine1,3

(M, g) is the curve

h̆t(p) = (ht(π(p)), aut(ht(π(p))) (9)

ut(x) := e−
1
4
t(S(ξ)(x)) ∈ Spine1,3, (10)

S(ξ) = L(ξ) + dξ, (11)

with π(p) = π((x, a)) = x.

To see why the above definition is really important consider that for t << 1 it is

ut = 1− 1

4
tS(ξ) +O(t2) + · · · (12)

Then, we have for t << 1 that

u−1
t γ

αut = {1 +
1

4
tS(ξ) +O(t2) + · · · }γα{1− 1

4
tS(ξ) +O(t2) + · · · }

= γα +
1

4
t[S(ξ),γα] +O(t2) + · · · (13)

Deriving in t = 0 we obtain the expression of the previous proposition.
Now, recall that the pullback γ ′αt = h∗tγ

α when ξ is an arbitrary vector field for t << 1

γ ′αt (x) = γα(x) + t£ξγ
α(x) +O(t2) + · · · (14)

Using the Proposition (1.1), comparing Eq.(14) with Eq.(13) and recalling Eq.(5), we
see that up to the first order we have

γ ′αt (x) = u−1
t (x)γα(x)ut(x) (15)

From Eq.(15), the Lie derivative £ξγ
α can be calculated in two ways, using the usual

definition by pullback or by the action of ut. Note that the action of ut is always orthogonal,
regardless of ξ be Killing. We will use this fact to give our geometric motivated concept
of Lie derivatives for Clifford and spinor fields.

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 5, N. 1, 2017.

DOI: 10.5540/03.2017.005.01.0206 010206-3 © 2017 SBMAC

http://dx.doi.org/10.5540/03.2017.005.01.0206


4

2 The Spinor Lie Derivative
s

£ξ

2.1 Spinor Images of Clifford and Spinor Fields

Given the spinorial frame Ξut(x) = (x, ut) in PSpine1,3
(M, g) we see that the basis {γ̌αt }

of PSOe1,3
(M, g) such that

γ̌αt (x) = u−1
t (x)γα(x))ut(x) = Λαtβ(x)γβ(x), (16)

is always orthonormal relative to g. This suggests to define a mapping sht
(associated with a one parameter group of diffeomorphisms ht generated by a vector field
ξ) acting on sections

∧pT ∗M, C`(M, g), C`lSpine1,3
(M, g), C`rSpine1,3

(M, g). With x′ = ht(x)

we start giving

Definition 2.1.

sht : sec C`(M, g)←↩ sec
∧pT ∗M → sec

∧pT ∗M ↪→ sec C`(M, g),

P (x′) 7→ P̌t(x) =
1

p!
Pi1···ip(x

′(x))γ̌i1t (x) · · · γ̌ipt (x)

=
1

p!
Pi1···ip(x

′(x))u−1
t γ

i1(x) · · ·γip(x)ut (17)

P (x) =
1

p!
Pi1···ip(x)γi1(x) · · ·γip(x) 6= P̌t(x)

P (x′) =
1

p!
Pi1···ip(x

′)γi1(x′) · · ·γip(x′) (18)

Eq.(17) extends by linearity to all sections of C`(M, g). Given any C ∈ sec C`(M, g) we
will call Čt the spinor image of C.

2.2 Spinor Derivative of Clifford and Spinor Fields

Definition 2.2. The spinor Lie Derivative
s
£ξ of a Clifford field C = [(Ξ0, C)] (a section

of C`(M, g)) in the direction of an arbitrary vector field ξ is

s
£ξ C =

d

dt
Čt

∣∣∣∣
t=0

(19)

A trivial calculation gives
s
£ξC = dξ C+

1

4
[S(ξ),C]. (20)

Given that a left DHSF Ψ , a section of C`lSpine1,3
(M, g) (respectively Φ, a section of

C`rSpine1,3
(M, g)) can be written as

ψΞ0
= Ψ1rΞ0

, φΞ0
= 1lΞ0

Φ, (21)

ψΞ0
1lΞ0

= Ψ1rΞ0
1lΞ0

= Ψ1, 1rΞ0
φΞ0

= 1rΞ0
1lΞ0

Φ = 1Φ, (22)

Ψ = ψΞ0
1lΞ0

= ψΞu1
l
Ξu, Φ = 1rΞ0

φΞ0
= 1rΞuφΞu . (23)
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Using Eq.(23) and that ψΞ0
,φΞ0

∈ sec C`0(M, g), where we know how to act, we
propose the following definition:

Definition 2.3. The spinor images of Ψ and Φ are:

sht Ψ ◦ htx = sΨt(x) := (u−1
t ψΞ0

(x)ut)
s1ltΞ0

, (24)
shtΦ ◦ htx = sΦt(x) := s1rtΞ0

(u−1
t φΞ0

(x)ut) (25)

s1ltΞ0
:= u−1

t 1lΞ0
, s1rtΞ0

= 1rΞ0
ut. (26)

Definition 2.4. With these actions, we define:

s
£ξΨ : =

d

dt
sΨt(x)|t=0 ,

s
£ξΦ :=

d

dt
sΦt(x)|t=0 (27)

The objects sΨt,
sψtΞ0

,s Φt,
sφtΞ0

,sCt (sections of C`lSpine1,3
(M, g), C`rSpine1,3

(M, g), C`(M, g))

will be referred in what follows as the spinor images of the fields Ψ,ψΞ0
, Φ,φΞ0

,C.

A trivial calculation gives

s
£ξΨ = dξΨ +

1

4
S(ξ)Ψ,

s
£ξΦ = dξΦ− Φ

1

4
S(ξ) (28)

Remark 2.1. In the Clifford bundle in the basis Ξ0, ψΞ0 ∈ sec C`(M, g) is the represen-
tative of Ψ ∈ sec C``Spine1,3

(M, g) and if we calculated its spinor Lie derivative as a section

of C`(M, g) we should get, of course

s
£ξψΞ0 = dξψΞ0 +

1

4
[L(ξ) + dξ, ψΞ0 ]. (29)

This does not mimics the spinor Lie derivative of a DHSF Ψ. Since one of the main
reasons to introduce representatives in the Clifford bundle of Dirac-Hestenes spinor fields
is to have an easy computation tool when using these representatives together with other
Clifford fields we will agree to take as the Lie derivative of ψΞ0 an effective Lie derivative

denoted
(s)

£ξψΞ0 where the pullback of ψΞ0 is the formula given by Eq.(4). Thus,

(s)

£ξψΞ0 = dξψΞ0 +
1

4
L(ξ)ψΞ0 +

1

4
dξψΞ0 (30)

We then write for C ∈ sec C`(M, g) and ψΞ0 as just defined

(s)

£ξ(CψΞ0) = (
s
£ξC)ψΞ0) + C(

(s)

£ξψΞ0). (31)
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Remark 2.2. An analogous concept to
(s)

£ξ has been introduced in [14] for the covariant
derivative of representatives in the Clifford bundle of Dirac-Hestenes spinor fields and we
recall that for C ∈ sec C`(M, g) and ψΞ0 as above defined we have

(s)

Dξ(CψΞ0) = (DξC)ψΞ0 + C(
(s)

DξψΞ0),

DξC = dξC+
1

2
[ωξ, C],

(s)

DξψΞ0 = dξψΞ0+
1

2
ωξψΞ0 . (32)

with ωξ := 1
2ξ
κωακβγ

αγβthe called “connection 2-form”. Henceforth, to simplify the nota-
tion, the covariant derivative acting in a representative in the Clifford bundle of a DHSF
will be written as

Ds
ξψΞ0 = dξψΞ0+

1

2
ωξψΞ0

and we will write also
s
£ξψΞ0 (given by Eq.(31)) instead of

(s)

£ξψΞ0 .

Remark 2.3. One can easily verify that with this agreement we have a perfectly consistent
formalism. Indeed, recalling that the spinor bundles are modules over C`(M, g) and that
any section C of C`(M, g) [14] can be written as the product of a section Ψ of C`lSpine1,3

(M, g)

by a section Φ of C`rSpine1,3
(M, g), i.e., C = ΨΦ we immediately verify that the operator

s
£ξ

satisfies when applied to Clifford and spinor fields the Leibniz rule, i.e.,

s
£ξ(ΨΦ) = (

s
£ξΨ)Φ+ Ψ(

s
£ξΦ), (33)

s
£ξ(CΨ) = (

s
£ξC)Ψ +C(

s
£ξΨ), (34)

s
£ξ(ΦC) = (

s
£ξC)Φ+C(

s
£ξΦ). (35)

3 Conclusions

Here we claim to have given a geometrical motivated definition for a Lie derivative
of spinor fields in a Lorentzian structure (M, g), by finding an appropriated image for
Clifford and spinor fields under a diffeomorphism generated by an arbitrary vector field ξ.

We called such operator the spinor Lie derivative, denoted
s
£ξwhich is such that

s
£ξg = 0

for arbitrary vector field ξ. We compared our definitions and results in [11] with the many
others appearing in literature on the subject.
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