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Abstract. Let M = SO(1, 4)/SO(1, 3) ' S3 × R (a parallelizable manifold) be a subma-
nifold in the structure (M̊, g̊) (hereafter called the bulk) where M̊ ' R5 and g̊ is a pseudo
Euclidian metric of signature (1, 4). Let i : M → R5 be the inclusion map and let g = i∗̊g
be the pullback metric on M . It has signature (1, 3). Let D be the Levi-Civita connection of
g. We call the structure (M, g) a de Sitter manifold and MdSL = (M = R×S3, g,D, τg, ↑)
a de Sitter spacetime structure, which is of course orientable by τg ∈ sec

∧4
T ∗M and time

orientable (by ↑). Under these conditions, here we want to present the results that appears
in [5–7] in particular that if the motion of a free particle moving on M happens with constant
bulk angular momentum then its motion in the structure MdSL is a timelike geodesic. Also
any geodesic motion in the structure MdSL implies that the particle has constant angular
momentum in the bulk. So using the Clifford and spin-Clifford formalisms [3] and the natu-
ral hypothesis that a particle moving freely in (M, g) has constant bulk angular momentum
leads naturally to the Dirac equation as found in [1] in the de Sitter structure (M, g).
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1 Introduction

In what follows SO(1, 4) and SO(1, 3) denote the special pseudo-orthogonal groups in
R1,4 = (M̊ = R5, g̊) where g̊ is a metric of signature (1, 4). The de Sitter manifold.M
can be viewed as a brane (a submanifold) in the structure R1,4. The structure MdSL =
(M, g,D, τg, ↑) will be called Lorentzian de Sitter spacetime structure where, if ι : R×S3 →
R5 is the inclusion mapping, g = ι∗̊g and D is the parallel projection on M of the pseudo
Euclidian metric compatible connection D̊ in R1,4 (details in [4, 5]). As well known,
(M, g), a pseudo-sphere is a spacetime of constant Riemannian curvature. It has ten
Killing vector fields. The Killing vector fields are the generators of infinitesimal actions of
the group SO(1, 4) (called the de Sitter group) in M . The group SO(1, 4) acts transitively
in SO(1, 4)/SO(1, 3), which is thus a homogeneous space (for SO(1, 4)).
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The structure MdSL has been used by many physicists as an alternative arena for the
motion of particles and fields in place of the Minkowski spacetime structure3 M. One of
the reasons is that the isometry group of the structure (M, g) is the de Sitter group, which
as well known reduces to the Poincaré group when he radius ` of (M, g) goes to ∞. Now,
as well known the natural motion of a free particle of mass m in M occurs with constant
momentum p = mκ∗ where κ : R→M is a timelike curve pointing to the future. The
question which naturally arises is the following:

Which is the natural motion of a free particle of mass m in the structure (M, g)?

One natural suggestion given the well known relation between the de Sitter and Poin-
caré groups [2] is that such a motion occurs with constant angular momentum L as de-
termined by (hyper observers) living in the bulk. Given this hypothesis we proved in [6]
the following proposition: (a): If a particle travels with geodesic motion in the structure
MdSL then its bulk angular momentum L is constant. (b): Also,if a particle of mass m
constrained to move in M occurs with constant bulk angular L then its motion for an
observer living in the brane M is described by a timelike geodesic in the structure MdSL.

2 The Lorentzian de Sitter MdSL Structure and its (Projec-
tive) Conformal Representation

Let SO(1, 4) and SO(1, 3) be respectively the special pseudo-orthogonal groups in the
structures R1,4 = {M̊ = R5, g̊} and R1,3 = {R4,η} where g̊ is a metric of signature (1, 4)
and η a metric of signature (1, 3). The manifold M = SO(1, 4)/SO(1, 3) will be called the
de Sitter manifold. Since

M = SO(1, 4)/SO(1, 3) ≈ SO(1, 4)/SO(1, 3) ≈ R×S3 (1)

this manifold can be viewed as a brane [4] (a submanifold) in the structure R1,4. In General
Relativity studies it is introduced a Lorentzian spacetime, i.e., the structure MdSL = (M =
R×S3, g,D, τg, ↑) called Lorentzian de Sitter spacetime structure4 where if ι : R×S3 → R5

is the inclusion mapping, g := ι∗̊g and D is the parallel projection on M of the pseudo
Euclidian metric compatible connection in R1,4 (details in [5]). As well known, MdSL is a
spacetime of constant Riemannian curvature. It has ten Killing vector fields. The Killing
vector fields are the generators of infinitesimal actions of the group SO(1, 4) (called the
de Sitter group) in M = R×S3 ≈ SO(1, 4)/SO(1, 3). The group SO(1, 4) acts transitively
in SO(1, 4)/SO(1, 3), which is thus a homogeneous space (for SO(1, 4)).

We now give a description of the manifold R×S3 as a pseudo-sphere (a submanifold)
of radius ` of the pseudo Euclidean space R1,4 = {R5, g̊}. If (X1, X2, X3, X4, X0) are the

3Minkowski spacetime is the structure M = (M = R4,η, D, τη, ↑ ) where η is the usual Minkowski
metric, τη ∈ sec

∧4T ∗M defines an orientation and ↑ denotes that (M,η) is time orientable. Details
in [3].

4It is a vacuum solution of Einstein equation with a cosmological constant term. We are not going to
use this structure in this paper.
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global orthogonal coordinates of R1,4, then the equation representing the pseudo sphere is

(X0)2 − (X1)2 − (X2)2 − (X3)2 − (X4)2 = −`2. (2)

Introducing projective conformal coordinates {xµ} by projecting the points of R×S3

from the “north-pole” to a plane tangent to the “south pole” we see immediately that
{xµ} covers all R×S3 except the “north-pole”. We have [2, 5, 7, 8]

Xµ = Ωxµ, X4 = −`Ω
(

1 +
σ2

4`2

)
(3)

with

Ω =

(
1− σ2

4`2

)−1
, σ2 = ηµνx

µxν (4)

and we immediately find that

g := ι∗̊g = Ω2ηµνdx
µ ⊗ dxν , (5)

and the matrix with entries ηµν is the diagonal matrix diag(1,−1,−1,−1).

3 Constant Bulk Angular Momentum versus Geodesic Equa-
tion

Now, write D∂µ∂ν = Γα···µν∂α and let σ : I →M, s 7→ σ(s) be a time like geodesic in M .

Its tangent vector field σ∗ such that σ∗(s) = dxµ◦σ(s)
ds

∂
∂xµ

∣∣
σ

= dxµ

ds
∂
∂xµ satisfy Dσ∗σ∗ = 0

and in components it is
d2xα

ds2
+ Γαµν

dxµ

ds

dxν

ds
= 0. (6)

In [6] we obtain the following equation for this geodesic in the de Sitter manifold:

d2xα

ds2
+

Ω

l2
xµ
dxµ

ds

dx0

ds
− Ω

2l2
x0
dxµ
ds

dxµ

ds
= 0. (7)

Let {EA = ∂
∂XA }, A = 0, 1, 2, 3, 4 be the canonical basis of TM̊ = TR5 and let

{EA = dXA} be a basis of T ∗M̊ dual to {EA = ∂
∂XA }. We have

g̊ = ηABE
A ⊗ EB (8)

where the matrix with entries ηAB is the diagonal matrix diag(1,−1,−1,−1,−1). Moreo-
ver let g̊ = ηABEA ⊗EB be the metric of the cotangent bundle (with ηACηCB = δAB). Fi-
nally let {EA} be the reciprocal basis of {EA}, i.e., g̊(EA, EB) = δAB.We introduce the basis
{EA} of R5 and make the usual identification EA(p) ' EA(p′) = EA, EA(p) ' EA(p′) = EA
for any p, p′ ∈ R5.

Let X = XAEA be the position covector, P = mẌBEB the bulk momentum covector
and L = X∧P the bulk angular momentum of a particle of mass m in the bulk spacetime
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R1,4. If the particle is constrained to move ”freely”5 in the submanifold R×S3 a natural
hypothesis is that its bulk angular momentum is a constant of motion. Now, L = cte
implies immediately

1

2
(XAẌB − ẌAXB)EA ∧ EB = 0. (9)

Thus, for κ, ι = 0, 1, 2, 3 it is XκẌι − ẌκXι = 0 and XκẌ4 − ẌκX4 = 0, so when we
use the conformal coordinates we get [6]:

xk
(
dxi

ds

1

`2
Ω2xi

dxl

ds
+ Ω

d2xl

ds2

)
−
(
dxi

ds

1

`2
Ω2xi

dxk

ds
+ Ω

d2xk

ds2

)
, xl = 0 (10)

(2Ω−1)
d2xk

ds2
+

1

l2
Ω(2Ω−1)xi

dxi

ds

dxk

ds
− 1

2l4
Ω2xixjx

k dx
i

ds

dxj

ds
− 1

2l2
Ωxk

dxi
ds

dxi

ds
− 1

2l2
Ωxi

d2xi

ds2
xk = 0,

(11)
which are the equations of motion according to the structure MdSL.

With this notations and hypotesis we have proved in [6] the following proposition:

Proposition 3.1. (a): If a particle travels with geodesic motion in the structure MdSL

then its bulk angular momentum L is constant. (b): Also, if a particle of mass m cons-
trained to move in M occurs with constant bulk angular L then its motion for an observer
living in the brane M is described by a timelike geodesic in the structure MdSL.

4 Conclusions

We said in the introduction that the de Sitter structure MdSL has been studied by
many authors as a possible natural arena for the motion of particles and fields instead of
the Minkowski spacetime structure M. We discussed these issues in [5]. At least we want
to emphasize that recently it has been shown in [7] by using the Clifford and spin-Clifford
formalisms [3] that the hypothesis that a particle moving freely in (M, g) has constant
bulk angular momentum leads naturally to the Dirac equation as found in [1] in the de
Sitter structure (M, g).
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