Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Asymptotic Analysis in obtaining reduced kinetic mechanisms

César Bublitz¹ Graduate Program in Applied Mathematics, UFRGS, Porto Alegre, RS Álvaro Luiz de Bortoli² Departament of Pure and Applied Mathematics, UFRGS, Porto Alegre, RS

1 Introduction

Computer simulations with detailed kinetic mechanisms are more complicated due to the existence of highly reactive radicals, which induce a significant stiffness in the system of governing equations due to differences, of several orders of magnitude, in timescales of conversion between species. Consequently, there is the need to develop, from these detailed mechanisms, the corresponding reduced mechanisms with fewer variables and moderate stiffness, maintaining a good level of accuracy and comprehensiveness of the detailed kinetic mechanisms [2].

Several reduction techniques have been developed in recent years: CSP (Computational Singular Perturbation), ILDM's (Intrinsic Low Dimensional Manifolds), DRG (Directed Relation Graph), lumping, sensitivity analysis, among others. But, for the final stage of reduction the most widely used method is the steady state assumption (QSSA), which sometimes is combined with partial equilibrium (PE). These hypotheses allow the elimination of some species and the subsequent conversion of differential equations into algebraic equations.

2 Asymptotic Analysis in Mechanisms Reduction

The assumptions of QSSA and PE may be justified by making the asymptotic analysis, which is a method used to describe a limit behaviour [1]. A chemical kinetic problem can be written as a ODE's system involing the concentration vector c and the vector k, in which each component is the specific rate $k_i = AT^{\beta}e^{-Ea/RT}$ of reaction i [2,4].

A simple example of the application of asymptotic analysis can be seen in reducing the hydrogen mechanism [3]. The skeletal mechanism has eight reactions that are shown in the Table 1. For the elementary reactions presented in the table, the balance equations can be written as

$$w_H = -w_1 + w_2 + w_3 - w_5 - w_6 - w_7, \qquad w_{HO_2} = w_5 - w_6 - w_7 - w_8, \tag{1}$$

$$w_O = w_1 - w_2 + w_4, \qquad w_{H_2} = -w_2 - w_3 + w_7,$$
 (2)

$$w_{O_2} = -w_1 - w_5 + w_7 + w_8, \qquad w_{H_2O} = w_3 + w_4 + w_8, \tag{3}$$

$$w_{OH} = w_1 + w_2 - w_3 - 2w_4 + 2w_6 - w_8, \tag{4}$$

¹cesarb89@gmail.com

²dbortoli@mat.ufrgs.br

 $\mathbf{2}$

where $w_{S_i} =$	$\frac{dc_i}{dt}$	is the	production	rate	of	species	S_i .	Ass	suming	that	species	Ο,	ОН	and
			70.11	1 тт	1	3.6	1		[0]					

	Reaction	A	β	
1f	$H + O_2 \rightarrow O + OH$	$2.0 imes 10^{14}$	0.0	16800
1b	$O + OH \rightarrow O_2 + H$	1.575×10^{13}	0.0	690
2f	$O + H_2 \rightarrow OH + H$	1.8×10^{10}	1.0	8826
2b	$OH + H \rightarrow O + H_2$	$8.0 imes 10^9$	1.0	6760
3f	$H_2 + OH \rightarrow H_2O + H$	1.17×10^9	1.3	3626
3b	$H_2O + H \rightarrow H_2 + OH$	5.09×10^9	1.3	18588
4f	$OH + OH \rightarrow H_2O + O$	6.0×10^8	1.3	0
4b	$H_2O + O \rightarrow OH + OH$	5.9×10^9	1.3	17029
5	$H + O_2 + M^a \rightarrow HO_2 + M^a$	2.3×10^{18}	-0.8	0
6	$H + HO_2 \rightarrow OH + OH$	1.5×10^{14}	0.0	1004
7	$H + HO_2 \to H_2 + O_2$	2.5×10^{13}	0.0	700
8	$OH + HO_2 \rightarrow H_2O + O_2$	2.0×10^{13}	0.0	1000

 Table 1: Hydrogen Mechanism [3]

 HO_2 are in steady-state ($w_{S_i} = 0$), and eliminating some of the fastest consumption rates, namely w_2 , w_3 and w_7 for O, OH and HO_2 , respectively, one obtains balance equations, whose stoichiometry corresponds to the global mechanism of two reactions

(I) $3H_2 + O_2 \rightarrow 2H + 2H_2O$, (II) $2H + M \rightarrow H_2 + M$

with rates $w_I = w_1 + w_6$ and $w_{II} = w_5$.

3 Conclusions

One of the main objectives of reducing mechanisms is minimize computational time, needed in the CFD (Computational Fluid Dynamics) treatment of reactive flows. The contribution of the present work goes in this direction.

References

- G. S. L. Andreis, F. A. Vaz, A. L. De Bortoli. Bioethanol combustion based on a reduced kinetic mechanism, *Journal of Mathematical Chemistry*, volume 17, chapter 51, pages 1584-1598, 2013. DOI: 10.1007/s10910-013-0166-3.
- [2] A. L. de Bortoli, G. S. L. Andreis, F. N. Pereira. Modeling and Simulation of Reactive Flows. Elsevier Science Publishing Co Inc, 2015.
- [3] N. Peters. Fifteen lectures on laminar and turbulent combustion, *Ercoftac Summer School*, 1992.
- [4] T. Turányi, A. S. Tomlin. Analysis of Kinetic Reaction Mechanisms. Springer, 2014.