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Magnetic resonance of brain images have an implicit sparsity in an appropriate transform
domain [1]. Based on compressed sensing theory (CS), images with a sparse representation can be
recovered from undersampled k-space data. However, to have an efficient reconstruction [1], the
undersampling scheme should be incoherent with respect to the sparsifying transform [2].

Several strategies for incoherent undersampling can be encountered in the literature (see [1]
and reference therein). For instance, random uniform undersampling has been proven to offer
correct incoherent properties. Randomness shows both mathematical simplicity and guarantees
the near-optimal degree of incoherence [2]. However, fully random 2D sampling is not feasible in
terms of hardware. To deal with this problem, the lines of a Cartesian trajectory to fully sample
the k-space can be selected uniformly at random, i.e., the k-space is randomly undersampled only
in one Cartesian direction [2].

In general, the k-space representation (for instance Fourier coefficients) of MRI images does
not follow a uniform distribution, i.e., most of the energy in the k-space is concentrated near
the origin, where the lowest, most relevant spatial frequency information is located [2, 3, 6]. This
suggests that in a real scenario, undersampling should be denser in the central region of k-space
and then accordingly be diminished following a variable density scheme [1]. As a result, one should
build a sampling scheme that follows an exponential probability density function (PDF), where
the higher probability of drawing a particular sample resides in the center of k-space.

In this work, we consider a combination of a Cartesian variable density and a random uniform
undersampling scheme. To this end, we divided the entire region in n frequency bands, whose size
or sampling density has varied according to a normalized, discrete exponential PDF :

PDF (k) =
c(k)∑n
k=1 c(k)

, (1)

where k ∈ {1, 2, ..., n} is the number of each band in the grid, c(k) = kv, v is the degree of the
exponential function, and for our numerical experiments we let v vary in the range [1,4]. We
proposed an undersampling scheme generator that incorporates an exponential decay combined
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with a degree of randomness, based on two modes: (a) varying the number of samples within the
bands (Mode 0), and (b) varying the width of the band (Mode 1), where every line in the Cartesian
direction have the same probability of being sampled.

Our proposal allows the undersampling scheme to exhibit a higher incoherence measure in
accordance with the Transformed Point Spread Function (TPSF) metric in comparison to other
variable density schemes (polynomial, exponential, or schemes based on the golden ratio). In order
to obtain the undersampled solution in the k-space, an associated optimization problem in (2) is
formulated:

min
(
‖ Fsy − x ‖22 +λ ‖ Ψy ‖1

)
(2)

where Fs, y, x, and Ψ represent the Fourier operator including the proposal undersampling scheme,
the reconstructed real image, the undersampled k-space input, and the wavelet operator, respec-
tively.

The proposed approach for undersampling was tested in brain image reconstruction and com-
pared with results presented in [1]. The problem in equation (2) was solved with a non-linear
conjugate gradient algorithm included in the library SparseMRIV0.2© (publicly available in fol-
lowing link: https: // people. eecs. berkeley. edu/ ~ mlustig/ Software. html ). Incoherence
(TPSF), mean square error (MSE), peak signal to noise ratio (PSNR), and structural similarity
index measure (SSIM) reconstruction metrics have been used. The numerical results with tested
images (from [1]) of the proposed undersampling approach show an improvement up to 19% in
TPSF, 71% in MSE, 20% in PSNR, and a similar value in SSIM, which means that the recon-
structed image is better than the reference obtained at the literature.
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