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Abstract. Single-phase Natural Convection Loops (NCL’s) are engineering solutions to
perform the function of heat removal without external energy supply. Nuclear Power Indus-
try is, perhaps, the most important application of NCL’s. Greater reliability and lower costs
are advantages of such systems in comparison to active ones. The counterpart is the pos-
sibility of unstable behavior to show up for certain operating and constructing parameters.
The interest of the present work is on the dynamic behavior of the single-phase variance
of NCL’s. A 1D model has been implemented to perform both linear and non-linear sta-
bility analysis. This work shows how operating and geometrical parameters impact on the
dynamic behavior of single-phase NCL’s.
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1 Introduction

The interest in Natural Convection Loops (NCL’s) has increased considerably after the
events of Fukushima, in 2011, when three core meltdowns occurred in a Nuclear Power
Station of Fukushima Daiichi, after the catastrophic tsunami that hit the east coast of
Japan. The outcomes from this accident have pushed new designs of nuclear power plants
to incorporate passive safety systems, so that in the scenario of a loss of external energy
supply, cooldown of the plant is still possible. Besides, passive systems are cheaper and
provide enhanced reliability in comparison to active ones. However, since there are no
active control mechanisms, passive systems are more susceptible to unstable behaviors.

NCL’s are a type of passive system to perform the function of heat removal. They can
operate in single or two-phase flow regime (for subcritical thermodynamic conditions).

This work consists on a numerical study of the dynamic behavior of single-phase NCL’s
as a function of the operating and geometrical parameters. The platform for the study was
a 1D model, based on momentum and energy balances in the loop. A linearized version of
perturbed form of equations has also been implemented to perform linear stability analysis.
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2 Mathematical Model

The basic structure of the NCL’s considered in this work consists of a heater and
a cooler connected by pipes, forming a rectangular circuit. Heater and cooler consist
of tube sections with conducting walls and can be vertical or horizontal. It reproduces
the dimensions of the experimental NCL installed in Bhabha Atomic Research Centre
(BARC), in Mumbai, India, described by [1]. Figure 1 shows a schematic drawing of the
circuit.

Figure 1: Dimensional drawing of experimental NCL constructed at BARC. The figure is
an extraction from [1].

Note that the loop is provided with both vertical and horizontal heaters and coolers, with
the objective to observe the influence of the orientation of these components, which is
actually the main topic of [1]. They have found that the most unstable configuration is
that of horizontal heater and cooler (HHHC configuration).

It is assumed that all properties are constant in the cross section area. The circuit walls
are assumed to be adiabatic along the entire loop except for heaters and coolers. Axial
heat conduction is neglected, as well as viscous heating. After the a.m. assumptions, the
mathematical model consists on the momentum and energy conservation equations given
by
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heater:
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pipes:
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∂s
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In equation 1: L, D and A are the length, diameter and cross section area (constant)

of the loop, respectively, and w = 1
ρA

∫ L
0 udA is the system’s mass flow rate, t is time, f

is friction factor, K is the local losses coefficient, ρ is the fluid density, g is the module
of gravity field. Boussinesq hypothesis is adopted to write density as a linear function of
temperature in the gravity term of momentum equation to solve the inconsistency between
incompressibility assumption and the presence of buoyancy. Thus, density is written as
ρ = ρ0[1−β(T −T0)], where the subscript 0 represents a value based on mean temperature
value and β is the thermal expansion coefficient (also evaluated at T0). The friction factor
f and K were introduced.

In equation 2: T is the temperature field, s is the space coordinate in axial direction,
Q is the total heat input rate, Lh is the heater length, cp is the specific heat at constant
pressure, U is the heat transfer coefficient in the cooler, Ts is the temperature of the cold
source.

The friction factor f can be calculated by many correlations. For natural convection
in tubes, it is still common practice to employ forced flow correlations, like Poiseuille’s
(f = 64/Re, in laminar regime), Blasius’ (f = 0.316/Re0.25, in turbulent regime) and
others. In this work, a combination of Poiseuille’s correlation with that of Colebrook is
employed. There are many works which tried to establish a suitable correlation for natural
convection, but none has covered a wide range of flow regimes or loop configuration.
Even in the case of the classical correlations for forced flow, considerable differences may
appear. [2] have addressed this topic, arguing that single-phase NCL typically operate in
the transitional range, where friction correlations differ most.

3 Linear Stability Model

To evaluate the stability of a NCL by the balance equations, i.e., by transient calcu-
lations, can be a costly option if a wide range of parameters has to be considered. So
linear stability analysis can be a valuable tool in such situations. It provides a measure
of the system’s response to small perturbations, assuming that non-linear effects can be
neglected. This hypothesis do not apply for large perturbations. In this work, linear anal-
ysis is used to generate a stability map for the NCL described in the previous section, as
a function of heat transfer coefficient U and the heat input Q. The following section will
make use of this map to analyze non-linear response for three selected operating points in
the map.
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Stability analysis is performed by the solution of an eigenvalue problem, obtained by
the perturbed version of equations 1 and 2. Introducing the decomposition given by

w = w + ŵeλt (3a)

T = T + T̂ (s)eλt (3b)

into equations 1 and 2, with λ ∈ C, we arrive at the system of equations given by 4 and
5.

λŵ = −
(
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In equations 3, w and T define the steady state condition and ŵ and T̂ are the ampli-
tude of the perturbations, where ŵ is constant and T̂ = T̂ (s) is a function of s.

4 Stability map

The linear stability model has been employed to generate a stability map for a range
of heat transfer coefficient U (of the cooler) and the heat input Q. The choice for these
two parameters follows the stability maps generated by [3]. In that work the authors
performed linear stability analysis for the four loop configurations, for the domain defined
by 300 < U < 1000 W/m2/K and 100 < Q < 800 W, and observed instability only for
the HHHC configuration. For this reason, fig. 2 shows the stability map only the HHHC.
Table 1 summarizes the geometrical and operating parameters of the loop.

internal diameter [mm] 26.9
loop height [m] 2.200
loop width [m] 1.415

heater length [m] 0.620
cooler length [m] 0.800

local losses 4.2
mesh nodes 1200

Q [kW] 0.1 – 0.8
U [kW/m2/◦C] 0.3 – 1.0

friction correlation Poiseuille-Colebrook
Ts [◦C] 30

Table 1: Geometric, operating and numerical data for the HHHC 26.9 mm diameter loop.
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Figure 2: Stability map for the HHHC configuration of 26.9 mm diameter loop from [1].

Immediate conclusion is that increasing Q produces “increasing instability”, while
increasing U tends to stabilize the system. The transient results that will be shown in the
next section are based on this map, where stable behaviors are expected from the white
area, and increasing oscillations are expected for the other regions.

5 Transient Results

Transient calculations were performed for the parameters listed in table 1, using CFL =
1. CFL is a parameter for numerical stability defined as CFL = u∆t/∆s. In this code,
CFL is an input for the calculation of ∆t, which is given by ∆t = min

(
CFL ∆s

u ,∆tmax

)
,

where ∆t was set at 0.1. This aspect of numerical formulation is discussed in [4]. In the
following, the transient result for three points in the map of fig. 2 are presented, all for
U = 0.8 kW/m2/K: Q = 0.1 kW, Q = 0.2 kW and Q = 0.4 kW. The object was to have
a sample of a stable system, a neutral system and an unstable system. For the unstable
case (Q = 0.4 kW), a second simulation was performed which considered CFL = 0.1. For
each case, the frequency domain is presented. In all simulations, the initial mass flow was
set to zero.

Figure 3 shows a stable case and a slightly unstable case, both dominated by a single
oscillating mode. Larger amplitudes are observed for the case of Q = 0.2 kW. It is
interesting to note that for point Q = 0.2 kW and U = 0.8 kW/m2/K, although located
in the stable region of the stability map, the system presents increasing oscillations, which
may denote the results of non-linear effects.
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Figure 3: Comparison of transient results and frequency spectra of NCL with U = 0.8
kW/m2/K for two heat input values: Q = 0.1 kW and Q = 0.2 kW.

Figure 4 presents the transient for the unstable operating point Q = 0.4 kW and
U = 0.8 kW/m2/K. Oscillations grows up to flow reversal, when the system seems to
reach a limit cycle. Fourier transform shows two predominant modes in the range between
the two red dots.
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Figure 4: Transient and frequency spectrum of NCL with Q = 0.4 kW and U = 0.8
kW/m2/K.

The same point, but with CFL reduced to 0.1, produces quite different behavior. A
non-symmetrical oscillating regime takes place after flow reversal. The frequency spectrum
(performed over the range between the red dots) shows several oscillating modes, one of
them with predominantly larger amplitude.
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Figure 5: Transient and frequency spectrum of NCL with Q = 0.4 kW and U = 0.8
kW/m2/K, with CFL reduced from 1 to 0.1.

6 Conclusions

Firstly, it can be concluded that the results from non-linear calculation agreed well
with the linear stability model.

For the HHHC configuration studied, stable systems show oscillating behavior domi-
nated by a single mode after a perturbation, and unstable systems present growing am-
plitude of oscillations, also in a single frequency, until flow reversal occurs. After reversal,
depending on geometrical and operating parameters, other modes may appear in the sys-
tem’s dynamics.

It was also observed that the numerical formulation influences the results, like modi-
fying the CFL number.
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