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Introduction:

The present paper aims to present a dynamic analysis of a double pendulum (Figure 1) in the
time and frequency domain, using python and its numerical libraries numpy and scipy [1]. Simple
physical model based on two pendulums, one being fixed at the other’s end, strongly nonlinear and
sensitive to initial conditions that can present a chaotic response [2].

Figure 1: Free body diagram

Equation of motion:

The equation of motion of this system is found using the Lagrange method, this method being
based on the kinetic and potential energy of the system.

The equation of motion of the double pendulum:
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Assuming for this system l1 = l2 = l and M1 = M2 = M and rearranging the ode obtained of
the eq.1 as a system of first order diferential equations, for the numerical solution the following

variables are introduced Pθ1 = θ̇1 and Pθ2 = θ̇2 therefore the equations becomes:
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Discussion of results

By analyzing the phase portrait responses (Figure 2 a, Figure 2 c) and the Wavelet transform
(Figure 2 b, Figure 2 d), two of the tools which are often used to detect chaos, the behavior of the
system is observed. The simulation results present abnormal behavior, because when analyzing
the phase portrait of periodic systems (systems with simple behavior) it is observed that the lines
do not cross frequently, generating a response similar to an ellipse, but in the case of Figure 2 and
Figure 2 c it is observed that this phenomenon does not occur. Moreover, in the Wavelet transform
of Figure 2 b and Figure 2 d it is not possible to count the frequencies, unlike periodic systems,
which is a high indication of chaos, besides being a system sensitive to initial conditions where the
slightest variation can drastically alter the response of the system.

Figure 2: a)Phase portrait θ1, b)CWT θ1, c)Phase portrait θ2, d)CWT θ2

Conclusion

Although the double pendulum is a relatively simple mechanical system, it can exhibit chaotic
response if they exhibit abnormal behavior as described, which is observable using tools such as
phase portrait and wavelet transform. To perform such tasks, python proves to be a very competent
and relatively simple tool to use.
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