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Resumo. Combustion processes are usually described using detailed chemical kinetic me-
chanisms. Sometimes, in the modeling of the complex burner systems is necessary to use
chemical reduction techniques to decrease the stiffness of the system of differential equati-
ons. The principal difference among the existing reduction methods appears in the tactics
to distinguish between slow and fast processes. In the present work the Reaction-Diffusion
Manifolds method is applied to the methane/air reaction mechanism, in order to reduce the
chemical kinetic model, depending on transport properties. The approach allows incorpora-
ting the effect of the coupling of reaction and diffusion processes. The methodology applied,
based on slow manifolds of low dimension, allows decreasing the computational time needed
to obtain results for confined turbulent jet diffusion flame. The Large-Eddy Simulation is
required to represent the turbulent flow. The numerical results compare favorably with the
experimental data available in the literature.
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1 Introduction

A large variety of models describing several processes occurring in combustion, as
chemistry and turbulence, and a variety of numerical tools needed to solve the underlying
equation systems have been developed [9]. It is known that typical kinetic models used in
reacting flows contain many elementary reactions, are stiff and non-linear. Hence methods
of dimension reduction of large detailed chemical kinetic models are very important and
have been developed intensively in the last years.

Chemically reacting flows are governed by a strong interaction of chemical kinetics
with molecular transport properties. Therefore, the reduced models for such systems have
to take into account both the chemical reaction and the diffusion processes. To deal with
this problem, the developed reduction method, the so-called Reaction-Diffusion Manifolds
(REDIM) method accounts for the transport properties [6].
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Most of the existing methods exploit the so-called natural multi-scale structure of
the system of governing equations. It is assumed that there are some fast modes or
processes which are relaxed quickly and that only the slow processes govern the overall
system dynamics. As a result, the long term system evolution is represented primarily
by the dynamics of the slow reactions along a stable geometrical attractor with invariant
properties, while the fast processes are relaxed. Moreover, removing the fast modes and
reducing the dimension decreases the stiffness of the system of differential equations. This
in turn allows larger time steps during the integration and, therefore, solves one major
problem of the numerical implementation.

The reduced kinetic mechanism is constructed as a table of a slow manifold mesh in the
composition or state space. The manifold table contains all necessary information about
the reduced kinetics as well as about the projection of the original system of governing
equations on this low dimensional manifold. Thus, the actual reduction is realized by a
reformulation of the system of governing equations on the lower dimensional manifold,
that approximates the full system dynamics in the state space.

Note that the 1D REDIM method, fully corresponds to the flamelet method, because
it reproduces the detailed stationary solution. However, it allows an extension to higher
dimensions and, therefore, it solves problems where 1D flamelets cease to describe the
complex chemistry-transport interaction in an accurate way.

Turbulent combustion modeling is a very broad subject. In recent years many studies
have been devoted to applicability of combustion models in Large-Eddy Simulations (LES).
The objective of Large-Eddy Simulations is to compute explicitly the largest structures of
the flow, while the effects of the smaller one is modeled [4]. This is particularly interes-
ting for simulations of chemically reacting flows, where chemical reactions in nonpremixed
combustion occur only by molecular mixing of fuel and oxidizer, which in practical ap-
plications occur only on the dissipative turbulent scales, the combustion process occurs
essentially at the smallest scales of the sub-filter.

The works from Boersma and Lele [2], Veynante and Vervisch [10] and Peters [8] help
to understand multiscale modeling of combustion and the work from Barlow and Frank [1]
presents experimental data to check/compare the results of methane/air turbulent jet
diffusion flames, considered here.

2 Mathematical Description

In the following the mathematical concept of the REDIM method is presented. To
simplify the presentation of the suggested technique let us first introduce a vector notation.
The vector Ψ = (Ψ1, ...,Ψn) will characterize the thermochemical state of the system. In
this vector notation the system of governing equations for a reacting flow can be written
as

∂Ψ

∂t
= F(Ψ)− u · ∇Ψ+

1

ρ
∇ · (D∇Ψ) ≡ Φ(Ψ), (1)

where Ψ and F(Ψ) are n = 1 + nsp-dimensional vectors, Ψ = (T, Y1, ..., Ynsp)
T , F(Ψ) =

(ẇT , ẇ1, ..., ẇnsp)
T is the thermo-chemical source term and D = λ/cp · I is a n × n-
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dimensional diffusion matrix, in the present work equal diffusivities are assumed.
Here, ρ is the density, u denotes the velocity field, T the temperature, Yk the mass

fraction of the k-th species, t the time, λ the thermal conductivity, cp the heat capacity,
ẇT = Qẇk, Q the combustion heat and ẇk the reaction rate of the k-th species. When
multiple reactions are involved in a reactive process, the contribution of each is added to
calculate the consumption/production of each species, i.e

ẇk = Wk

nr∑
r=1

(ν ′′kr − ν ′kr)

[
k̇fr

nsp∏
k=1

[
ρ

Wk
Yk

]ν′kr
− k̇br

nsp∏
k=1

[
ρ

Wk
Yk

]ν′′kr]
, (2)

where Wk is the molecular weight, ν ′kr and ν ′′kr are stoichiometric coefficients of the k-th
species in r-reaction, k̇fr and k̇br are forward and backward rate constants.

According to our assumption, the system solution in the state space belongs to a
ms-dimensional invariant manifold defined by an explicit function Ψ(θ) : M = {Ψ :
Ψ = Ψ(θ),Ψ : Rms → Rn}, ms ≪ n, where θ is a ms-dimensional parameter on the
manifold, which represents local coordinates. The slow manifold is defined by using a
projection operator onto the normal space (TM)⊥ : P(TM)⊥ = (I −ΨθΨ

+
θ ) of M and by

the invariance condition

(I −ΨθΨ
+
θ ) ·Φ(Ψ) = 0. (3)

Here Ψ+
θ is the Moore-Penrose pseudo-inverse of Ψθ.

To solve the manifold equation (3), we need to solve the PDE system

∂Ψ(θ)

∂t
= (I −ΨθΨ

+
θ ) ·Φ(Ψ). (4)

The stationary solution Ψ(θ,∞) defines the desired manifold. The equation (4) can
be simplified by

∂Ψ(θ)

∂t
= (I −ΨθΨ

+
θ ) ·

(
F(θ) +

λ

ρcp
Ψθθ ◦ ∇(θ) ◦ ∇(θ)

)
. (5)

For more details about the REDIM method, you can consult the works of Bykov and
Maas [3].

2.1 1D REDIM

In this paper, we develop a 1D REDIM for the methane/air reaction mechanism,
considering the reaction set given by Peters [7]. This mechanism contains 35 reactions
and 15 species.

Now, let us assume that the REDIM is parameterized by the progress variable θ = Z,
the mixture fraction. The mixture fraction is an extremely useful variable in combustion,
in particular for diffusion flames. It is simply defined by Z = YN2 − YNOX

2
/YNF

2
− YNOX

2
,

where YNOX
2

and YNF
2
are constant and represent the nitrogen mass fraction in the oxygen

stream and fuel stream, respectively. Z is a conservative scalar ranging from 0 to 1, which
relates the level of mixing between the oxygen and the fuel.
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The gradient vector Ψθ is given by Ψθ =
(
∂T
∂Z ,

∂Y1
∂Z , ...,

∂Ynsp

∂Z

)T
.

Assuming that Y1 = YN2 , the system of equations (5) is now given by the stationary
solution of

ρ
∂T

∂t
= ρ

χ

2

∂2T

∂Z2
+ ẇT , (6)

ρ
∂Yk
∂t

= ρ
χ

2

∂2Yk
∂Z2

+ ẇk, (7)

where χ = 2λ
ρcp

|∇Z|2. In equations (6) and (7) the Lewis numbers of all chemical species has
been assumed to be unity. This assumption has been argued that in turbulent combustion
only a thin region around the reaction zone is governed by molecular transport, whereas
turbulent transport is predominant in the outer inert mixing region, implying unity Lewis
numbers [9].

2.2 Frave Equation for Large Eddy Simulation

In this study, we consider the turbulent compressible flow to simulate a jet diffusion
flame. Unfortunately, usually the full numerical solution of the instantaneous balance
equations is limited to simplified cases, where the number of the time and length scales
present in the flow is not too great. To overcome this difficulty, an alternative is to use
large eddy simulation (LES). The largest turbulence scales are explicitly computed in the
LES and only the smallest, low-energy modes, are modeled. The prediction of mean flow
and mixing by LES is often found to be superior to classical steady RANS models, which
frequently fails for highly turbulent flow analysis.

In most LES of compressible flows, the flow variables are Favre averaged or density
weighted [2], f̃ = ρf/ρ, where the bar denotes the standard LES filtering. Using the Favre
average and after applying the standard LES filtering technique, we find the following go-
verning equation for momentum/Navier-Stokes, mixture fraction, temperature and species
mass fractions:

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũiũj)

∂xj
= − 1

M2

∂p̄

∂xi
+

∂

∂xj

(
µ̄t

Re
σ̃ij

)
(8)

∂(ρ̄Z̃)

∂t
+

∂(ρ̄ũjZ̃)

∂xj
=

∂

∂xj

(
µ̄t

Sc

∂Z̃

∂xj

)
(9)

∂(ρ̄T̃ )

∂t
− χ̃

2

∂2(ρ̄T̃ )

∂Z̃2
= ˜̇wT (10)

∂(ρ̄Ỹk)

∂t
− χ̃

2

∂2(ρ̄Ỹk)

∂Z̃2
= ˜̇wk (11)

In these equations M is the Mach, Re the Reynolds and Sc ∼ 0.4 the Schmidt numbers.
At low Mach numbers (M < 0.01) the spatial variations in pressure are small compared
to the pressure itself and may be neglected in the equation of state, where the pressure
may be approximated by a constant [5]. Therefore, the density is approximated using the
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state relation ρ̄ = (pW )/(RT̃ ), where R is the ideal gas constant. The pressure term is

obtained by equation ∇2p̄ = ∆t
(
∂ũi
∂xi

+ ∂ρ̄
∂t

)
.

The characteristic length and time-scales where combustion takes place are typically
well below the resolved grid scales, and the combustion process has been modeled entirely
at the subgrid level. Thus, most subgrid-scale stress models are based on an eddy viscosity
assumption. In the most commonly used model, developed by Smagorinky, the eddy
viscosity µt is obtained by assuming that the small scales are in equilibrium, so that
energy production and dissipation are in balance. This yields an expression of the form
µt = ρ̄(Cs∆)2|S̃ij |, where |S̃ij | = (2S̃ijS̃ij)

1/2, Cs ≃ 0.2 is the Smagorinsky coefficient
and the filter size is set equal to ∆ = (∆x∆y∆z)1/3 where ∆x, ∆y and ∆z denote the
grid spacings in the corresponding directions. Simulations are conducted on a three-
dimensional Cartesian mesh with non-uniform spacings in each of the three directions.

3 Numerical Tests

Numerical tests were carried out using the central second order finite difference method
in the space. Central schemes are preferred because they are not dissipative, this property
is generally considered necessary to prevent damping of small scales of turbulence, which
are important in reactive flows. The Runge-Kutta method was chosen to obtain numerical
solutions of high accuracy and to extend the stability region.

The configuration used for the validation of the proposed models is a piloted methane/air
jet diffusion flame (Sandia Flame D). Sandia Flame D consists of a main jet with a mixture
of 25% methane and 75% air by volume. The nozzle is placed in a coflow of air and the
flame is stabilized by a pilot with diameter Dp = 18.2 mm, as shown the Figure 1 (a). The
Reynolds number for the main jet is Re = 22400 based on the nozzle diameter d = 7.2 mm
and the bulk jet velocity 49.6 m/s. The burner has a proportional relationship L = 11D,
where D = 10d. This figure (side right) shows the representation of the two-dimensional
mesh of the burner used. It is structured and non-uniform mesh with geometric progres-
sion. Transient simulations of the mixing layer are performed with a mesh consisting of
149(L) × 51(D). The mesh refinement is located at the nozzle exit and along the center
line of the burner where the gradients of the dependent variables are high.

The validation of the REDIM modeling is performed by comparing of previous detai-
led computational and experimental results. To this flame, all details experimental are
provided and regularly updated in the web site [1].

In the figures which follow, we have the projections of the stationary solutions of equa-
tion (10) and (11) for a jet turbulent diffusion flame configuration. The initial conditions
are YO2,i = 0.23, YCH4,i = 0.16 and zero for all other species. All computations were
performed with a time step of ∆t = 0.000001.

The Figure 1 (b) shows numerical and experimental results for the H2O and CO2 mass
fractions in the mixture fraction space (Z). Where Z = 0 and Z = 1 the mass fraction of
products is zero, because these points has pure fuel (Z = 1) or pure oxygen (Z = 0). The
mass fraction of the products grows along the fraction of the mixture until reaching its
maximum value, where is the stoichiometries mixture, that is, ideal burning conditions.
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The Figure 1 (c) shows the profile of the H2O and CO2mass fractions along the central
axis of the jet. Numerical solutions are compared with the experimental data, too. The
results show that the mass fraction of these products increases as the jet develops, achieving
its maximum value, near x/d = 60, that is the position of stoichiometries condition. After
achieving this maximum value, the mass fraction decays. The numerical results are in
reasonable agreement with the experimental data, through error bar is observed that
most of the results are within the parameter. The differences might be inherent in the
simplification process required to allow a problem more accessible.
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Figura 1: (a) Burner sketch with a structured and non-uniform mesh. (b) Numerical and experi-
mental results for the H2O and CO2 mass fraction in the mixture fraction space. (c) Numerical
and experimental results for the H2O and CO2 mass fraction along the central axis, considering a
methane turbulent jet diffusion flame.

4 Conclusions

The studies presented here are concerned to the efficiency of REDIM method to si-
mulate a methane/air turbulent jet diffusion flame. For the one dimensional case (1D-
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REDIM), the thermo-chemical variables are related to the mixture fraction and the equa-
tions are solved by finite-difference method. The computational results for 1D-REDIM
are in agreement with experimental data for all quantities. It was observed that the deve-
loped method is computationally cheap and efficient, which turns it appropriate to study
similar problems, for future implementation in more complex calculations, and to use it
hierarchically to produce initial conditions for detailed numerical simulations.
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