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Departamento de Ingenieŕıa Nuclear, InSTEC, Havana, Cuba

Abstract. In this paper we propose a numerical nodal methodology for the development
of a method of spectral nodal class [1, 2] which is tested as an initial study of the solutions
(spectral analysis) of neutron transport equations in the formulation of discrete ordinates
(SN ), in one-dimensional geometry, two energy groups, isotropic scattering and considering
heterogeneous domains. These results are compared with the traditional fine mesh method
DD and the spectral nodal method SGF [1].The solution algorithms problems will be im-
plemented in a computer simulator made in MatLab language, the same that was used to
generate the results of the reference work.
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1 Introduction

The roots of transport theory go back more than a century to the Boltzmann equation,
first formulated for the study of the kinetic theory of gases [3, 4], and even today the
Boltzmann equation remains the principal tool of the gas dynamicist. Its counterpart for
the neutron “gas”, the so called neutron transport equation,is far younger [3] (less than 80
years). This neutron transport equation help us to predict the distribution in space, time
and energy of the neutrons in a nuclear reactor. Due to the complexity of the analytical
treatment of the linearised neutron transport equation were developed numerical methods
in order to obtain approximate solutions to the problem of radiation shields, global reac-
tor calculations and other apllications. These numerical methods allow us to do computer
modelling using a deterministic approach, since they usually use a formulation of discrete
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ordinates (SN ) [4]. SN discrete ordinates formulation made a discretization of the angular
variables in N directions (discrete ordinates) and use an angular quadrature sets for the
approximation of the integral source terms.
In this paper, we present a proposal for a numerical nodal methodology aimed to develop
a method of spectral nodal class [1] which is an initial study of the solutions (spectral
analysis) of neutron transport equation in the formulation of discrete ordinates (SN ), in
one-dimensional geometry, two energy groups, isotropic scattering and considering het-
erogeneous domain with fixed-source. These results are compared with the traditional
DD fine-mesh method, i.e., Diamond Difference and the spectral nodal method SGF, i.e.,
spectral Green’s function. The notation used in this paper, is the conventional notation
and it can be found in [1] and [4].

2 Energy discretization with the multigroup approximation

To derive multigroup equations we first divide the energy ranges into G intervals as
shown in Figure 1 , where EG = 0 and E0 is large that the number of particles at higher
energy is negligible. The particles in group g are taken to be just those with energies
between Eg and Eg−1; hence the group number increases as the energy [4].

Figure 1: Division of the energy range into G energy groups.

Numerically the multigroup approximation method reduces the neutron transport
equation to a system of G linear equations coupled by the source term. Contrary to what
is done in the use of spectral nodal methods where we need to get the auxiliary equations,
burdening our point of view of the algebraic simulations development and likely runtime of
computer codes, we propose to solve the neutron transport equation in discrete ordinates
formulation (SN ), starting by obtaining the α` parameters appearing on the system of
linear equations.

2.1 Mathematical Modelling

The equation that mathematically models the neutrons transport in a system with
isotropic scattering, in one-dimensional geometry, time-independent, with fixed-source
Qg(x), at multigroup case is represented in the equation (1).

µ
∂ψg(x, µ)

∂x
+ σtg(x)ψg(x, µ) =

G∑
g′=1

σg
′
g

soj

2

∫ 1

−1
ψg′ (x, µ

′
)dµ

′
+Qg(x) , g = 1 : G. (1)
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Where µ is the unitary vector of the particle direction of propagation, ψg is the neutron
angular flux on group g, σtg is the macroscopic total cross section in the g group, which

includes all possible interactions and σg
′
g

soj is the the macroscopic scattering cross section

from group g
′

to group g. The angular and spatial variables are limited respectively in
−1 6 µ 6 1 and 0 6 x 6 H, being H the thickness of the spatial domain. This type of
problem has (prescribed) boundary conditions as

ψm,g =

{
ψm,g(0) = fm,g , if µm > 0

ψm,g(H) = pm,g , if µm < 0
(2)

2.2 Discretization of the angular and spatial variables

Equation (1) can be solved satisfactorily by the discretization of the independent vari-
ables x and µ. Discretizing the µ variable in N (Gauss-Legendre quadrature order) angular
directions, discrete and equally divided, and replacing the integral for a set of numerical
angular quadratures, a method SN of discrete ordinates [3], we obtain the SN equations:

µm
d

dx
ψm,g(x) + σtg(x)ψm,g(x) =

G∑
g′=1

σg
′
g

so (x)

2

N∑
n=1

ωnψn,g′ (x) +Qg(x) ,

m = 1 : N, g = 1 : G. (3)

Considering an arbitrary spatial grid Γ, defined in a one-dimensional domain D with length
H, as shown in Figure 2. The spatial grid is composed by J nodes Γj with length hj .
Each node has constant material parameters.

Figure 2: Spatial mesh Γ in a one-dimensional domain D with length H.

Let us now consider Equation (3), in the formulation of SN discrete ordinates, defined
in an arbitrary homogeneous node.

µm
d

dx
ψm,g(x) + σtgjψm,g(x) =

G∑
g
′
=1

σg
′
g

soj

2

N∑
n=1

ωnψn,g′ (x) +Qgj ,

xj−1/2 6 x 6 xj+1/2, m = 1 : N, g = 1 : G. (4)
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2.3 Spectral analysis of the SN equations

The general solution of the system of equations (4) is given by

ψm,g(x) = ψhm,g(x) + ψpg(x) , (5)

where p denotes the particular solution with fixed-source and h indicates the homogeneous
component of the overall solution of the system of equations (4). The particular solution,
with fixed-source (Qgj its constant), takes the form

G∑
g′=1

(σtgjδg′g − σ
g
′
g

soj )ψ
p
gj

= Qgj , g = 1 : G. (6)

To determine the homogeneous solution ψhm,g,ν we consider the expression

ψm,g,ν = am(ν`)exp

(xj− 1
2
− x

ν`

)
, m = 1 : N, g = 1 : G, x ∈ Γj. (7)

where xj− 1
2

represent Γj node left boundary as shown on Figure 2. Inserting Equation(7)

on the Equation (4), we obtain the eigenvalue reverse problem

σtgj
µm

am,g(ν`)−
1

µm

G∑
g′=1

σg
′
g

soj

2

N∑
n=1

ωnan,g′ (ν`) =
1

ν`
am,g(ν`) ,

m = 1 : N, g = 1 : G. (8)

In a compact notation we can write

A~a(ν) =
1

ν
~a(ν) , (9)

where A is a real square matrix with order GN x GN and the ν` eigenvalues are all
symmetrical and they come in pairs, also due to symmetry of the Gauss-Legendre quadra-
ture. The normalization condition that we use to the eigenvectors can be expressed as∑N

n=1 an(ν`)ωn = 1. Hence, for x ∈ Γj we have a set of GN linearly independent eigen-
functions ψm,g,ν`(x) defined by the Equation(7). The general solution of the system of
equations (4) in Γj appears in the form of

ψm,g,ν`(x) =

GN∑
l=1

α`am(ν`)exp
(xj− 1

2
− x

ν`

)
+ ψpg ,

m = 1 : N, g = 1 : G, ` = 1 : GN, x ∈ Γj. (10)

where α` are the hypothetical parameters to be determined [1].
On the contrary to what is done in the spectral nodal methods where we need to get the
auxiliary equations to solve the neutron transport equation, burdening our simulations
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from the point of view of the algebraic development and likely runtime of computer codes,
we propose to solve the neutron transport equation in the formulation of discrete ordinates
(SN ), starting by obtaining the α` parameters of the system of equations (10), initially
knowing the fluxes entering at the homogeneous spatial nodes of the grid shown in Figure 2,
acting as boundary conditions for these nodes. With this procedure, we expect to obtain
all the other angular fluxes on the boundaries and inside the spatial nodes and with that,
we can calculate some magnitudes of interest in this simulation, such as, scalars fluxes at
the midpoint of the regions, absorption rates at homogeneous regions in the domain and
neutrons leak rates on the outer boundaries of the same domain.

2.3.1 Spectral Nodal Method of Reconstruction (MENR)

This method use the estimates of the incident angular fluxes in a node to determine
the angular fluxes outgoing on the direction of transport sweep. This calculation its
initially performed solving the inverse eigenvalue system represented at Equation (8) to
obtain the values of am(ν`) and ν`, after that, we calculate the α` parameters using the
Equation (10). Obtained the α` parameters we perform the calculation of the fluxes at
the node output also using Equation (10). To understand the dynamics of calculating the
emerging angular fluxes in a iterative scheme is necessary to define the concept of sweeping
the spatial discretization grid in a one-dimensional problems.
We define a transport iteration sweep, starting from left (x = 0 cm), calculating all the
fluxes leaving the node(µm > 0 and µm < 0) and reaching the end of the spatial domain
(x = Hcm), using Equation (10). The iterative process is performed until the prescribed
stopping criteria of the maximum norm of the scalar flux is achieved. The scalar flux is
given by Φ(x) = 1

2

∑N
n=1 ψn(x)ωn.

3 Numerical results

Figure 3: Heterogeneous slab with incoming angular fluxes of two groups of energy.

In this section , we described a numerical experiment, that we perform in order to
verify the accuracy of the MENR method. In our model problem, we used a multilayer
slab composed by four regions and four material zones, each one with 5 cm for a total
length of x = 20 cm (Figure 3) and prescribed fixed-source (Q = 1) at the third material
region. Vacuum boundary conditions apply at x = 20 for both groups of energy and for
group two in x = 0 and isotropic unit angular flux enter the domain in x = 0 for group 1.
The order of the Gauss-Legendre quadrature used was N = 4. Table 1 shows the values
of the physical and material parameters of our domain.
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Table 1: Nuclear properties of the model problem.

Zone σtg1(cm−1) σtg2(cm−1) σ11
so(cm−1) σ2→1

so (cm−1) σ1→2
so (cm−1) σ22

so(cm−1)
1 1.0000 1.0000 0.9900 0.0000 0.0080 0.9700
2 1.0000 1.2000 0.9000 0.0500 0.2000 0.8000
3 0.9000 1.5000 0.7500 0.1000 0.3000 0.9900
4 1.1000 0.8500 0.9500 0.0000 0.6000 0.2000

3.1 Comparing the results

In this section we present the results for the scalar fluxes (Table 2) and neutron ab-
sorption rate (Table 3) for two energy groups,these are essential parameters required to
obtain approximate solutions to the problem of radiation shields. The results obtained by
the MENR method where compared with the fine-mesh DD method and the coarse-mesh
SGF method in order to validate them.

Table 2: Scalar fluxes for two energy groups (neutrons/cm2s ) .

Φ(0) Φ(5) Φ(10) Φ(15) Φ(20)

g = 1 g = 2 g = 1 g = 2 g = 1 g = 2 g = 1 g = 2 g = 1 g = 2

DD 0.9268 0.0373 0.5616 0.2679 2.6692 1.4219 2.3151 1.5270 0.0381 0.0539

SGF 0.9268 0.0373 0.5616 0.2679 2.6692 1.4219 2.3151 1.5270 0.0381 0.0539

MENR 0.9268 0.0373 0.5616 0.2679 2.6692 1.4219 2.3151 1.5270 0.0381 0.0539

Table 3: Neutron absorption rate for energy groups (neutrons/cm2s ) .

Region1 Region2 Region3 Region4
g = 1 g = 2 g = 1 g = 2 g = 1 g = 2 g = 1 g = 2

DDmethod 0.0700 0.0353 0.5547 1.2427 1.7364 4.0963 0.9086 0.2874
SGFmethod 0.0700 0.0353 0.5547 1.2427 1.7364 4.0963 0.9086 0.2874

MENRmethod 0.0700 0.0353 0.5547 1.2427 1.7364 4.0963 0.9086 0.2874

3.2 Intra-nodal analytical reconstruction

A limitation in the use of methods of coarse-mesh, i.e., the spectral nodal methods [1,2];
it is in their limitation at generate neutron flux profile in specific points on the inside of
the spatial nodes. These coarse-mesh solutions, although accurate, do not carry informa-
tion about the neutron flux profile. Traditionally, more localized magnitudes have been
evaluated using fine-mesh methods with a high computational cost. An efficient alterna-
tive is to use a nodal method, e.g., SGF method, which generates the angular fluxes at
the boundaries of the nodes and through these magnitudes do an spatial reconstruction
inside the homogeneous regions of the spatial domain, using Equation (10). The results
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for the intranodal analytical reconstruction for the angular flux at x = 1 cm and angular
direction m = 2 for group 1 (0.8896) and 0.0832 for group 2 have the same accuracy that
the results presented by the methods used as reference(DD), however, with the MENR
method is no need to redo the calculation of the arbitrary constants α`, because these
constants were calculated in the development of the method, contrary to what is do in the
SGF methods how need to perform the calculation of these constants, after the conver-
gence of the angular fluxes. This fact represents an advantage of the MENR method on
the SGF method, from the point of view of obtaining the angular fluxes at specific points
in spatial domain.

4 Conclusions

The values obtained for the scalar flux, absorption rate, and neutron leakage at bound-
aries of the MENR method presents the same accuracy when compared with the results
obtained in other methods, DD and SGF. The results for the intranodal analytic recon-
struction have good accuracy, but the MENR method does not need to redo the calculation
of the arbitrary constant α`, which is a one of the advantages of this method over the SGF
when we need to make the reconstruction. The other MENR advantage, when compared
with the SGF method is its simplicity for obtaining its equations and their implementation
in the computer simulator in the MatLab language. In the future, we intend to apply the
MENR method to a domain with X,Y -geometry an one energy group(G = 1).
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