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In this work we present an artificial neural network (ANN) model for the scattering coefficient
estimation from total incident radiation measurements in a participating media. The inverse
radiative heat transfer problem is set as a regression problem that has the total incident radiation
measurements as dependent variables. The heat transfer is assumed to be modeled in an one
dimensional domain D = [a, b], in a medium with known absorption coefficient κ and heat radiation
source. The scattering coefficient σ is the independent variable.

The regression model is built as a Multi-layer Perceptron (MLP) artificial neural network
model [2]. Following a supervised training strategy, the MLP is calibrated from known ntrain
samples selected for this end. Any given j-th sample is a pair Xk = ({Φ(k)

i }
nv−1
i=0 , σk), where

Φ
(k)
i = Φ(k)(xi) is the total incident radiation measured at the vertex xi ∈ D, and nv is the fixed

number of vertices (measurement’s locations).

Each calibration sample XK is built by choosing the scattering coefficient σk and, then, com-
puting Φ(k) by solving the direct radiative heat transfer problem. The P1 approximation [1, 3, 5]
is used to compute the total incident radiation. Once the calibration is computed, the MLP
can be calibrated. The MLP has been computed using the machine learning Python package
scikit-learn [6]. The SP1 approximation has been computed using the finite element Python
package FEniCS [4].

The validation of the MLP model has been performed by applying nvalid validation samples.
Here, each validation sample j = 0, 1, . . . , nvalid has been built by randomly fixing the σk value
and, then, the related Φ(k) is computed from the P1 approximation of the direct radiative heat
transfer problem.

As a test case, lets considered D = [0, 1], a homogeneous medium with the absorption coefficient
κ = 1, and temperature T (x) = 1000 + 800x, x ∈ D. For this case, we have built a calibration

set with ntrain = 11, σk = 0.1k, k = 0, 1, . . . , ntrain − 1, and Φ
(k)
i = Φ(k)(xi), where xi = 0.25i,

i = 0, 1, . . . , nv − 1, nv = 5. Here, a MLP with one hidden layer (5 hidden neurons) has been
sufficient to reach a calibration curve with R2 = 0.99. The MLP has been then validated using a
validation set with 25 random samples with 0 ≤ σj ≤ 1. Again, a very good validation curve has
been found with R2 = 0.99. The results indicates the potentiality of the proposed methodology as
a tool to estimate the scattering parameter of radiative objects.
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