Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

A influência da modelagem da viscosidade dependendo da pressão nos escoamentos viscoelásticos

Maria Carolina B. de Souza¹ Gilcilene S. de Paulo²

Departamento de Matemática e Computação, Universidade Estadual Paulista, UNESP, Presidente Prudente, SP.

Na modelagem de escoamentos de fluidos pelas equações de Navier-Stokes a relação entre viscosidade do fluido e pressão do escoamento tem sido pouco considerada como objeto de estudo. Stokes, em 1845, reconheceu em [4] a existência de uma relação entre a viscosidade e a pressão. Posteriormente, Barus [1] mostrou experimentalmente o crescimento da viscosidade com o aumento da pressão e sugeriu a modelagem exponencial dada por $\eta(p) = \eta_0 e^{\gamma p}$, onde $\eta(p)$ é a viscosidade à uma pressão p acima do ambiente, η_0 é a viscosidade a uma pressão de referência, γ é uma constante com unidade Pa^{-1} .

O presente trabalho tem por objetivo analisar numericamente o comportamento de escoamentos incompressíveis e isotérmicos bidimensionais de fluidos viscoelásticos em que a viscosidade polimérica varia com a pressão. A modelagem exponencial da viscosidade polimérica dependendo da pressão é incluída no modelo viscoelástico FENE-CR [2] e, o principal foco é comparar os resultados numéricos obtidos desta modelagem com os resultados numéricos obtidos do modelo *standard* FENE-CR [2].

A metodologia matemática utilizada é baseada no método da projeção que consiste em desacoplar a velocidade e a pressão das equações de Navier-Stokes, e, de modo segregado, é adicionado o tratamento da equação constitutiva para o tensor não-Newtoniano. As equações resultantes desta estratégia são resolvidas numericamente pela técnica de diferenças finitas sobre uma malha deslocada do tipo Marker-And-Cell (MAC), baseando-se no trabalho [3].

O estudo de caso para investigar a influência da modelagem da viscosidade dependendo da pressão nos escoamentos viscoelásticos é realizado em uma geometria simples: o escoamento entre placas paralelas, e já é possível observar os efeitos desta modelagem. Inicialmente, em t=0, o fluido está parado no canal 2D. Um perfil reto de velocidade é imposto na entrada do canal para iniciar o escoamento até que ele atinja o estado estacionário. A condição no-slip é imposta sobre as placas. O tratamento das tensões nos contornos são baseados em [3]. Aplica-se a condição de Neumann homogênea na saída de fluido para as componentes da velocidade e do tensor.

Para analisar a convergência da metodologia numérica foram realizados refinamentos de malha a fim de quantificar o decaimento do erro da solução numérica, em um corte transversal ao canal, quando comparada a solução de referência na malha M_5 (dy=0.00625). As outras malhas consideradas estão descritas na Tabela 1. Nesta verificação da metodologia, houve o decaimento do erro ao utilizar malhas mais refinadas, indicando convergência numérica (ver Tabela 1).

A Figura 1 apresenta as soluções obtidas para a pressão em um corte longitudinal e para os tensores em um corte transversal ao canal com a variação do coeficiente γ para parâmetros da modelagem Re=1.0,~Wi=0.5, $\beta=0.1$ e L=100. Na comparação das duas modelagens

 $^{^{1}} carolina de.souza@hotmail.com\\$

²gilcilene.sanchez@unesp.br

Tabela 1: Erro Relativo.

	E(u)	$E(T_{xx})$	$E(T_{xy})$
$M_1(dy = 0.1)$	$1.89780E^{-2}$	$3.85529E^{-2}$	$1.95184E^{-2}$
$M_2(dy = 0.05)$	$4.89761E^{-3}$	$6.72454E^{-3}$	$4.89072E^{-3}$
$M_3(dy = 0.025)$	$1.17067E^{-3}$	$1.60774E^{-3}$	$1.16741E^{-3}$
$M_4(dy = 0.0125)$	$2.34715E^{-4}$	$3.20973E^{-4}$	$2.33261E^{-4}$

foi possível perceber a influência da viscosidade variando com a pressão no escoamento estudado, o aumento de γ acarretou em um aumento das forças presentes no escoamento. Além disso, as simulações realizadas forneceram resultados coerentes, se aproximando do usual (standard) quando $\gamma \to 0$.

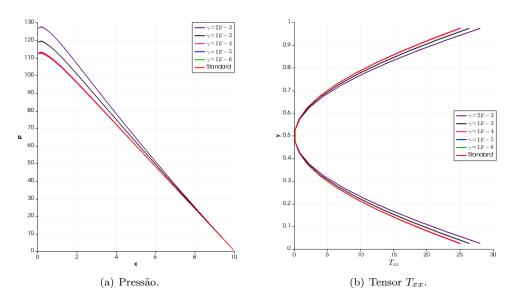


Figura 1: Influência da modelagem da viscosidade dependendo da pressão no comportamento do escoamento em um canal bidimensional: variando γ ($\gamma=2\cdot 10^{-3},\ 10^{-3},\ 10^{-4},\ 10^{-5},\ 10^{-6}$).

Referências

- [1] Barus, C. Isothermals, isopiestics and isometrics relative to viscosity, Am. J. Sci., 45:87–96, 1893.
- [2] Chilcott, M. D., Rallison, J. M. Creeping flow of dilute polymer solutions past cylinders and spheres, J. Non-Newton. Fluid Mech., 29:381-432, 1988.
- [3] Paulo, G. S., Oishi, C. M., Tomé, M. F., Alves, M. A., Pinho, F. T. Numerical solution of the FENE-CR model in complex flows, *J. Non-Newton. Fluid Mech.*, 204:50–61.
- [4] Stokes, G. G. On the Theory of the Internal Friction of Fluids in Motion and of the Equiibrium and Motion of Elastic Solids, *Trans. Cambridge Philos. Soc.*, 8:287-305, 1845.