Trabalho apresentado no XL CNMAC, Evento Virtual - Co-organizado pela Universidade do Mato Grosso do Sul (UFMS).

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Solução analítica do fluxo sanguíneo de Womersley 1D

David Soares Pinto Júnior¹
DMA/UFS, São Cristóvão, SE
Hádrian George da Rocha Santos²
DMEC/UFS, São Cristóvão, SE
Pedro Lucas Marinho Soares Souza³
DCOMP/UNIT, Aracaju, SE

Neste trabalho, foi utilizada a solução analítica fechada apresentada por [1] para o fluxo sanguíneo numa artéria cilíndrica, rígida, impermeável e axissimétrica. A componente axial da velocidade w(r,t) satisfaz à equação diferencial parcial de Navier-Stokes que governa o fluxo sanguíneo axissimétrico, definida por:

$$\rho \frac{\partial w}{\partial t} = \mu \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} \right) - \frac{\partial p}{\partial z}$$
 (1)

em que ρ é a densidade do sangue, μ é a viscosidade do sangue e $\frac{\partial p}{\partial z}$ é o gradiente de pressão axial. A solução original é atribuída ao fisiologista John Ronald Womersley para o caso de um gradiente de pressão sanguínea admitida pulsátil e periódica [2].

Diversamente, a solução formulada neste estudo é geral o suficiente para admitir várias formas do gradiente de pressão. É possível, então, simular casos relacionados a doenças cardiovasculares. Nesse sentido, prescrevendo valores realistas para os dados de viscosidade dinâmica e densidade do sangue, assim como para a pressão sanguínea e o raio da artéria, são apresentadas as evoluções do campo de velocidade do sangue na artéria. O campo de velocidades é, então, calculado da expressão (2):

$$w(r,t) = w_{\epsilon}(r) + \sum_{n=1}^{\infty} A_n(t) J_0(\lambda_n r)$$
 (2)

em que J_0 é a Função de Bessel de Ordem Zero de Primeira Espécie, r é a variável radial, t é a variável temporal, λ_n é o zero de $J_0(\lambda_n R)$, R é o raio da artéria, $A_n(t)$ é um coeficiente temporal para a forma $J_0(\lambda_n r)$, Δp é a diferença de pressão na extensão do comprimento ℓ da artéria e $w_{\epsilon}(r) = \frac{-\Delta p}{4\,\mu\,\ell}(r^2-R^2)$ (Lei de Poiseuille) é a parte puramente estacionária à qual é somada a série generalizada do tipo Fourier-Bessel, associada à parte transiente da solução para o campo velocidade. O coeficiente temporal $A_n(t)$ é deduzido do método de Kantorovich, para um gradiente de pressão arbitrário $W_{\tau}(t)$ dado, e definido por:

$$A_n(t) = e^{\frac{-\mu \lambda_n^2}{\rho} t} \int_0^t \frac{2W_{\tau}(t) e^{\frac{\mu \lambda_n^2}{\rho} t}}{\rho R \lambda_n J_1(\lambda_n R)} dt$$
 (3)

em que J_1 é a Função de Bessel de Ordem Um de Primeira Espécie.

¹shirleydspj@hotmail.com (Coordenador da XMAM)

²hadrianrocha@hotmail.com (Ligante da XMAM)

³pedro.lmarinho2002@gmail.com (Ligante da XMAM)

2

Este resultado demonstra a concreta possibilidade de simulação computacional e oferece inúmeros tópicos de continuidade para avançar nesta pesquisa de Matemática Aplicada à Medicina.

Agradecimentos

Aos membros da XMAM - Liga de Matemática Aplicada à Medicina/DMA/CCET/UFS.

Referências

- [1] Pinto Jr., D. S. Solução Analítica de Womersley para a Hemodinâmica 1D numa artéria, CITENG 2020, Universidade Tiradentes, Sergipe, 2020.
- [2] Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. *The Journal of physiology*, 127(3): 553-63, 1955. DOI:10.1113/jphysiol.1955.sp005276.

010297-2 © 2021 SBMAC