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1 Introduction

The description problem of integrable cases of the Abel’s polynomial differential equations
remains in focus of current researches. As far as we know, there exist results for generating exact
general solutions for the general form of the Abel’s equation of the second kind (see [1]), but the
same does not occur for the general form of this equation with term of cubic nonlinearity of the
type f3(x)z3, where f3(x) ∈ C(a, b) and z = z(x) ∈ C1(a, b). In this paper, we introduce a new
theorem, which under an existence condition, allows the construction of exact general solutions
for the Abel’s equation of the second kind with the extension f3(x)z3, where f3(x) is an arbitrary
continuous function. This result improves and generalizes earlier results from literature.

Several natural phenomena can be modeled, by using the classes of Abel’s nonlinear ordi-
nary differential equations. For example, there exist direct applications on nonlinear mechanics
(Duffing’s oscillator and Van der Pol’s oscillator), theory of chemical reactors and combustion the-
ory [2](1.3.5-2) and relativistic dissipative cosmological model. Here the notation ·′x = d·

dx denotes
the classical derivative with respect to the independent variable x.

A natural extension of the Abel’s equation of the second kind is given by

[g0(x) + g1(x)z] z′x =

3∑
n=0

fn(x)zn, (1)

satisfying z ∈ C1(a, b), g0(x), g1(x), fn(x) ∈ C(a, b) with n = 0, 1, 2, 3. We know that equation (1)
can be reduced to the Abel’s normal form yy′x − y = F (x), an equivalent equation that does not
accept exact general solutions in terms of known functions for F (x) arbitrary. Moreover, only very
restricted cases of equation (1) are solvable by means of parametric forms (see for instance [3], [2]).
In the present paper, we go a step beyond because we consider a more general case, by introducing a
new direct analytical method for obtaining exact general solutions for the general form of equation
(1) with g0(x), g1(x), f3(x) 6= 0 and f0(x) = 0. For this, we present a new theorem that has a
constructive demonstration such that we can find these solutions by means of the proof’s idea. We
use a new functional relation between the variable coefficients of equation (1), an appropriate and
admissible functional transformation and an argument of integrating factors.
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2 Main Result

Theorem 2.1. For the general form of equation (1) with f3(x) 6= 0 and f0(x) = 0, if there exists
a constant γ such that

2µ1(x)g1(x) = γµ2(x)g0(x), gi(x) 6= 0 i = 1, 2 (2)

then equation (1) has the exact implicit general solution

µ1(x) + γµ2(x)z + z2
(

2

∫
µ1(x)

f3(x)

g0(x)
dx+ C

)
= 0, (3)

where µ1(x) = exp
(

2
∫ f1(x)

g0(x)
dx
)

, µ2(x) = exp
(∫ f2(x)

g1(x)
dx
)

are integrating factors and C is an

arbitrary constant of integration.

Proof. The proof of the Theorem 2.1 is resumed as follows: firstly, we apply the suitable functional
transformation

z(x) = 1/[u(x)] ⇒ z′x = −u′x/u2 (4)

Without loss of generality, equation (4) removes the cubic nonlinearity extension term from equa-
tion (1), then, for f0(x) = 0, we obtain the Abel’s equation of the second kind

−[g1(x) + g0(x)u]u′x = f3(x) + f2(x)u+ f1(x)u2. (5)

Multiplying both sides of equation (5) by an integrating factor µ1 = µ1(x)

−µ1(x)g0(x)uu′x − µ1(x)f1(x)u2 − µ1(x)g1(x)u′x = µ1(x)f3(x) + µ1(x)f2(x)u

and taking into account that µ′1(x)g0(x) = 2µ1(x)f1(x), we have

−1

2
g0(x)(µ1(x)u2)′x − µ1(x)g1(x)u′x − µ1(x)f2(x)u = µ1(x)f3(x) (6)

Multiplying both sides of equation (6) by an integrating factor µ2 = µ2(x)

−1

2
µ2(x)g0(x)(µ1(x)u2)′x − µ2(x)µ1(x)g1(x)u′x − µ2(x)µ1(x)f2(x)u = µ2(x)µ1(x)f3(x)

and taking into account that µ′2(x)g1(x) = µ2(x)f2(x), we get

−µ2(x)g0(x)(µ1(x)u2)′x − 2µ1(x)g1(x)(µ2(x)u)′x = 2µ2(x)µ1(x)f3(x). (7)

Dividing both sides of equation (7) by −µ2(x)g0(x) and from equation (2), we obtain

(µ1(x)u2)′x + γ(µ2(x)u)′x = −2
µ1(x)f3(x)

g0(x)
. (8)

After integrating equation (8), we use the relation (4) for returning to the original dependent
variable z, so we obtain equation (3). This completes the proof of the Theorem. It is evident,
therefore, that the proof is algorithmic because this demonstration is programmable.
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